Abstract
No Abstract
References
Chow W.K., Gao Y., Zhao J., Dang J.F., Chow C.L., Miao L.: Smoke movement in tilted tunnel fires with longitudinal ventilation, Fire Safety Journal 75, 2015, pp14–22.
Ingason H., Li Y.Z.: Model scale tunnel fire tests with point extraction ventilation, Journal of Fire Protection Engineering 21(1), 2011, pp 5-36.
Kong J., Xu Z., You W., Wang B., Liang Y., Chen T.: Study of smoke back-layering length with different longitudinal fire locations in inclined tunnels under natural ventilation, Tunnelling and Underground Space Technology 107, 2021, 103663.
Ilias N., Lanchava O., Nozadze G.: Numerical modelling of fires in road tunnels with longitudinal ventilation system, Quality Access to Success, 18(S1), 2017, pp 77-80.
Vauquelin O., D Telle D.: Definition and experimental evaluation of the smoke “confinement velocity” in tunnel fires, Fire Safety Journal 40(4), 2005, pp 320-330.
Lei P., Chen C., Zhang Y., Xu T., Sun H.: Experimental study on temperature profile in a branched tunnel fire under natural ventilation considering different fire locations, International Journal of Thermal Sciences 159, 2021, 106631.
Lanchava O., Javakhishvili G.: Impact of strong fires on a road tunnel ventilation system, Bulletin of the Georgian National Academy of Sciences 15 (4), 2021, pp 38-45.
Lanchava O.: Analysis of critical air velocity for tunnel fires controlled by ventilation, Mining Journal 1(42), 2019, pp 126-132.
Deberteix P., Gabay D., Blay D.: Experimental study of fire-induced smoke propagation in a tunnel in the presence of longitudinal ventilation, Proceedings of the International Conference on Tunnel Fires and Escape from Tunnels, 2001.
Lanchava O., Ilias N., Nozadze G.: Some problems for assessment of fire in road tunnels, Quality Access to Success 18 (S1), 2017, pp 69-72.
Li Y.Z., Ingason H.: Effect of cross section on critical velocity in longitudinally ventilated tunnel fires, Fire Safety Journal 91, 2017, pp 303-311 https://doi.org/10.1016/j.firesaf.2017.03.069.
Fan C.G., Yang J.: Experimental study on thermal smoke backlayering length with an impinging flame under the tunnel ceiling, Experimental Thermal and Fluid Science 82, 2017, pp 262–268.
Yi L., Xu Q., Xu Z., Wu D.: An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire, Tunnelling and Underground Space Technology 43, 2014, pp 198-203.
Weng M., Lu X., Liu F., Du C.: Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation, Applied Thermal Engineering 94, 2016, pp 422–434.
Li Y.Z., Ingason H.: Discussions on critical velocity and critical Froude number for smoke control in tunnels with longitudinal ventilation, Fire Safety Journal 99, 2018, pp 22-26.
Vaitkevicius A., Carvel R., Colella F.: Investigating the Throttling Effect in Tunnel Fires, Fire Technology 52, 2016, pp 1619–1628 DOI: 10.1007/s10694-015-0512-z.
Thomas P.H.: The movement of buoyant fluid against a stream and the venting of underground fires, Fire Research Notes, 351, 1958, http://www.iafss.org/publications/frn/351/-1.
Thomas P.H.: The Movement of Smoke in Horizontal Passages against an Air Flow. Fire Research Station. Boreham Wood, 1968, p 8.
Road tunnels: vehicle emissions and air demand for ventilation, PIARC Technical Committee C4, Technical report 2012R05EN: 87 http://www.piarc.org, 2012.
Road tunnels: vehicle emissions and air demand for ventilation, PIARC Technical Committee D5, Technical report 2019R02EN: 62 http://www.piarc.org, 2019.
NFPA 502, Standard for Road Tunnels, Bridges, and Other Limited Access Highways, 2020.
Lanchava O., Ilias N., Nozadze G., Radu S.M., Moraru R.I., Khokerashvili Z., Arudashvili N.: FDS Modelling of the Piston Effect in Subway Tunnels. Environmental Engineering and Management Journal 18(4), 2019, pp 317-325.
Li J., Li Y.F., Cheng C.H., Chow W.K.: A study on the effects of the slope on the critical velocity for longitudinal ventilation in tilted tunnels, Tunnelling and Underground Space Technology 89, 2019, pp 262-267.
Li Y.Z., Lei B., Ingason H.: Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires, Fire Safety Journal 45, 2010, pp 361-370.
Lia J., Li Y.F., Cheng C.H., Chow W.K.: A study on the effects of the slope on the critical velocity for longitudinal ventilation in tilted tunnels, Tunneling and Underground Space Technology 89, 2019, pp 262-265.
Danziger N.H., Kennedy W.D.: Longitudinal ventilation analysis for the Glenwood canyon tunnels, Fourth International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels, BHRA Fluid Engineering, 1982, pp 169-186.
Lee C.K., Chaiken R.F., Singer J.M.: Interaction between duct fires and ventilation flow: an experimental study, Combustion Science and Technology 20, 1979, pp 59-72.
Kennedy W.D.: Critical velocity: past, present and future, Seminar of Smoke and Critical Velocity in Tunnels, JFL Lowndes, 1996, pp 305–322.
Lanchava O., N. Ilias N.: Calculation of railway tunnels ventilation. Journal of Engineering Sciences and Innovation, 5(1), 2020, pp 69-86.
Lanchava O., Abashidze G., Tsverava D.: Securing fire safety for underground structures, Quality Access to Success, 18(S1), 2017, pp 47-50.
Lanchava O., Ilias N., Nozadze G., Radu S.M.: Heat and hygroscopic mass exchange modeling for safety management in tunnels of metro, Quality Access to Success, 20(S1), 2019, pp 27-33.
Lanchava O., Ilias N.: Complex calculation method of temperature, mass transfer potential and relative humidity for ventilation flow. Technical Sciences 3 (1), 2018, pp 69-84.
Lanchava O.A. Heat and mass exchange in newly driven mine workings. Sov. Min. Sci. (Engl. Transl.); (United States) 21(5), 1986.
Lanchava O., Ilias N., Nozadze G., Radu S.M., Moraru R.I., Khokerashvili Z., Arudashvili N.: The impact of the piston effect on the technological characteristics of ventilation in the subway tunnels. Proceedings of 8th International Symposium “Occupational Health and Safety” SESAM, 2017, pp 342-352.
Lanchava O., Nozadze G., Bochorishvili N., Lebanidze Z., Arudashvili N., Jangidze M., Tsikarishvili K.: Criteria for evaluation of emergency firefighting in transport tunnels. Transport Bridge Europe-Asia, 2014, pp 29-34.
Lanchava O., Ilias N.: Critical velocity analysis for safety management in case of tunnel fire. MATEC Web of Conferences 305, 00023 (2020), SESAM 2019 https://doi.org/10.1051/matecconf/202030500023
Lanchava O., Ilias N., Nozadze G.: Numerical simulation of air flow in short metro ventilation shafts caused by a piston effect. MATEC Web of Conferences 305, 00050 (2020), SESAM 2019. https://doi.org/10.1051/matecconf/202030500050
Lanchava O., Ilias N., Radu S.M., Jangidze M., Khokerashvili Z.: Fire development study on physical models of transport tunnels. MATEC Web of Conferences 342, 03020 (2021) https://doi.org/10.1051/matecconf/202134203020
Lanchava O., Ilias N., Radu S.M., Nozadze G., Tsanava D.: Analysis of the use of transformable elements in intelligent tunnel ventilation systems. MATEC Web of Conferences 354, 00020 (2022) https://doi.org/10.1051/matecconf/202235400020
Lanchava O.A.: Hygroscopic heat and mass transfer in underground structures. GTU, Tbilisi, 1998, p 272.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.