On the possibility of using seaweeds as raw materials for producing cosmetics and cosmeceuticals (Review)

The use of seaweed in cosmetics and cosmeceuticals is described. It is shown that the biologically active substances contained in them have antibacterial, antifungal, antioxidant and anti-inflammatory properties, have UV-protective, antimicrobial, antiviral, antiallergic, antioxidant and other activities.
Downloads
Metrics
No metrics found.
Shejal Singh, Vaibhav Singh. Cosmeceuticals;The Fusion of Cosmetics and Pharmaceuticals. Journal of Community Pharmacy Practice,2024, 4(42) р.16-27.
Kishor A. Bellad, Basavaraj K. Nanjwade, Meghana S. Kamble, Teerapol Srichana, et al.. DEVELOPMENT OF COSMECEUTICALS.World Journal of Pharmacy and Pharmaceutical Sciences, 2017,Vol6, Issue 4, р. 643- 692.
Anitha M. G., Pooja Hiremat Divya K., Abhiram P. A. Survey study on adverse effects of synthetic cosmetics. International Journal of Community Medicine and Public Health, 2023,10(11), р.4147-4152.
Lucía López-Hortas, Noelia Flórez-Fernández, Maria D Torres, Tania Ferreira-Anta et al.. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics Mar Drugs. 2021 Sep 29,19(10):552- 582.
Algae Extract (Seaweed): Cosmetic Ingredient INCI https://cosmetics.specialchem.com › inci-ingredients › al...
Pereira L. Seaweeds as a source of bioactive substances and skin care therapies - cosmeceuticals, algotherapy and thalassotherapy. Cosmetics.2018, 5, р.68-92.
Jesumani V., Du H., Aslam M., Pei P., Huang N. Potential use of bioactive compounds from seaweeds in skin care - a review. Mar. Drugs. 2019,17 ,р.688- 707.
Couteau C., Coiffard L. Phytocosmetics and other marine cosmetics, special cosmetics created using marine resources. Mar. Drugs. 2020, 18,р.322- 343.
Morais T., Cotas J., Pacheco D., Pereira L. Seaweed compounds: a sustainable source of cosmetic ingredients? Cosmetics. 2021, 8,р.8.
Alves A., Sousa E., Sousa E., Kijjoa A., Pinto M. Marine compounds with potential for use as cosmeceuticals and nutricosmetics. Molecules.2020, 25, р.2536- 2574.
Suzana Elena, Biris-Dorhoi, Delia Michiu, Carmen R. Pop, Ancuţa M. Rotar. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities Nutrients 2020, 12(10):1-23.
Naser W. Anti-aging cosmetic effects of various natural biofunctional ingredients: a review. Int. J. Appl. Pharm. 2021,13 :10–18.
Haresh S. Kalasariya, Carlos Eliel, Maya-Ramírez, João Cotal. Cosmeceutical Significance of Seaweed: A Focus on Carbohydrates and Peptides in Skin Applications Phycology 2024, 4(2), 276-313.
Ghadir El-Chaghaby, Sayed Rashad. An overview of algae prospects in cosmeceuticals. Journal of the Egyptian Womenʼs Dermatologic Society, 2022,18(3), р.161-168.
Haresh S. Kalasariya, Mehul P. Dave, Virendra Kumar Yadav, Nikunj B. Patel.
BENEFICIAL EFFECTS OF MARINE ALGAE IN SKIN MOISTURIZATION AND PHOTOPROTECTION. International Journal of Pharmaceutical Science and Health. 2020, Issue 10, Vol.5,р.1-11.
Cosmetic properties and applications of seaweed ResearchGate https://www.researchgate.net ›
MuhammadHakimin Shafie, Mohd Lias Kamal, Fathin Farhah Zulkiflee, Sharizal Hasan. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. Journal of the Indian Chemical Society. 2022,Volume 99, Issue 9, 100613.
Pangestuti, R.; Shin, K.-H.; Kim, S.-K. Anti-photoaging and potential skin health benefits of seaweeds. Mar. Drugs 2021,19, 172-200.
Pimentel, F.B., Alves, R.C., Rodrigues, F., Oliveira, M.B.P.P. Macroalgae-Derived Ingredients for Cosmetic Industry-An Update. Cosmetics 2018, 5(1),р. 2-19.
Marta Salvador Ferreira, Diana I S P Resende, José M. Sousa Lobo, Emília Sousa. Marine Ingredients for Sensitive Skin: Market Overview.Marine Drugs, 2021, 19(8),р.464-481.
Aslam, A., Bahadar, A., Liaquat, R., Saleem, et al..Algae as an attractive source for cosmetics to counter environmental stress. Sci. Total Environ. 2021, 772, 144905.
Faria-Silva C.,Ascenso A., Costa A., Marto J. at al..Feeding the skin: A new trend in food and cosmetics convergence. Trends Food Sci. Technol. 2020, 95, 21–32.
Dermocosmetics and Cosmeceuticals - IMPAG https://www.impag.ch › ... 2018.
September 23, 2024.
Haresh S. Kalasaria, Leonel Pereira.Dermocosmetic benefits of phenolic compounds derived from marine macroalgae. Applied Science 2022,12,(23) :11954.
Dermo cosmetics for women. Laboratories Vivacy. https://vivacy.com › products
Hossam S. El-Beltagi, Amal A. Mohamed, Heba I. Mohamed, Khaled M. A. Ramadan at al..Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review.Mar Drugs. 2022, 20(6), р. 342 -352.
Silvia Lomartire, Ana M. M. Gonçalves.An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs 2022, 20(2), р.141-149.
Haresh S. Kalasariya, Carlos Eliel Maya-Ramírez, João Cotas, Leonel Pereira. Cosmeceutical Significance of Seaweed: A Focus on Carbohydrates and Peptides in Skin Applications. Phycology. 2024, 4(2), 276-313;
Zheng L.X., Chen X.Q., Cheong K.L. Current trends in marine algae polysaccharides: The digestive tract microbial catabolism, and prebiotic potential. Biol Macromol.2020 May, 15:151:344-354.
Biswajita Pradhan, PrajnaParamita Bhuyan, Srimanta Patra, Rabindra Nayak at al.. Beneficial effects of seaweeds and seaweed-derived bioactive compounds:Current evidence and future prospective. Biocatalysis and Agricultural Biotechnology, 2022,Volume 39, 102242.
Aziz E., Batool R., Khan MW., Rauf A., et al..A review on bioactive compounds from red algae and their pharmaceutical applications. J. Altern. Complement. Med. 2021, 17: 20190203.
Cheong K-L, Qiu H-M, Du H, Liu Y, Khan B.M. Oligosaccharides derived from red marine algae: production, properties and potential applications in healthcare and cosmetics. Molecules. 2018, 23,р.245- 257.
Saluri M, Kaldmäe M, Rospu M, Sirkel H, Paalme Tet al..Spatial variability and structural characteristics of phycobiliproteins from the red algae Furcellaria lumbricalis and Coccotylus truncatus. Algal Res. 2020,52 :102058.
Rangel KC, Villela LZ, Pereira KDC, Debonsi HM, Gaspar LR. Evaluation of photoprotective potential and toxicity of extracts of Antarctic red macroalgae Curdiea racovitzae and Iridaea cordata for cosmetic use. Algal Res. 2020,50 :101984.
Wijesinghe W., Jeon Y. Biological activities and potential cosmeceutical applications of bioactive components from brown algae: a review. Phytochem.Rev. 2011, 10, р. 431–443.
Vo TS, Kim S.-K., Ryu B., Ngo DHet al.. Suppressive activity of fucofuroecol-a derived from the brown alga Ecklonia stolonifera okamura on UV-B-induced mast cell degranulation.Mar. Drugs.2018, 16, р.1 -19.
Yanshin N., Kushnareva A., Lemesheva V., Birkemeier K., Tarakhovskaya E. Chemical composition and potential practical application of 15 species of red algae from the White Sea coast (Arctic Ocean) Molecules. 2021,26 :2489.
Sugiura Y., Kinoshita Y., Misumi S., Yamatani H. et al..Correlation between seasonal variations in phlorotannins and antiallergic effects of the brown alga Ecklonia cava subsp. stolonifera. Algal Res. 2021,58 :102398.
Catarino MD, Amarante SJ, Mateus N., Silva AMS et al.. Brown algae phlorotannins: a marine alternative to combat oxidative stress, inflammation, and the cancer network. Foods. 2021,10 :1478.
Susano P., Silva J., Alves C., Martins A., et al. Unlocking the dermatological potential of the brown algae Carpomitra costata . Mar. Drugs. 2021,19 :135.
Hermund D.B., Torsteinsen H., Vega J., Figueroa F.L., Jacobsen C. Screening for New Cosmeceuticals from Brown Algae Fucus vesiculosus with Antioxidant and Photo-Protecting Properties. Mar. Drugs 2022, 20, 687-706.
Pachiappan Perumal, Annamalai Aravinth, Sundaramoorthy Dhanasundaram, Rajendran Rajaraet al.. Phytochemical, amino acid and fatty acid profile of selected brown and red seaweed species from Gulf of Mannar, Southeast India. Food and Humanity, 2023, Volume 1, December 2023, Pages 1659-1669.
Punniamoorthy Thiviya, Ashoka Gamage, Nalin Suranjith, Othmane Merah et al.. Seaweeds as a Source of Functional Proteins. Phycology,2022, 2(2), 216-243.
Marlene Machado, Susana Machado, Filipa B. Pimentel, Victor Freitas et al.. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System.Foods. 2020, 9(10),р. 1382-1397.
Monika Černá . Seaweed proteins and amino acids as nutraceutical.Adv Food Nutr Res. 2019:64:297-312.
Kazir M., Abuhassira Y., Robin A., Nahor O.et al.. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocol. 2019, 87,р.197–203.
Fleurence J., Morançais M., Dumay J. Seaweed proteins. In: Yada R.Y., editor. Proteins in Food Processing. 2nd ed. Woodhead Publishing; Cambridge, UK: 2018, p. 245–262.
Pangestuti R, Kim SK.Proteins, peptides, and amino acids from seaweeds. In: Tiwari BK, Toy DJ, editors. Seaweed sustainability: food and non-food applications. Academic Press; San Diego, CA, USA: 2015, p. 125–140.
Yoong Kit Leong, Jo-Shu Chang. Proteins and bioactive peptides from algae: Insights into antioxidant, anti-hypertensive, anti-diabetic and anti-cancer activities. Trends in Food Science & Technology,2024, Volume 145, 104352.
Dini I., Mancusi A. Food Peptides for the Nutricosmetic Industry. Antioxidants. 2023,12,р.788-799.
Mehdi Alboofetileh, Ali Hamzeh, Mehdi Abdollahi . Seaweed Proteins as a Source of Bioactive Peptides. Curr Pharm Des, 2021,27(11),р.1342-1352.
Javier Echave, Paz Otero, Paula Garcia-Oliveira, Paulo E. S. Munekata et al.. Seaweed-Derived Proteins and Peptides:Promising Marine Bioactives. Antioxidants (Basel). 2022,11(1),р. 176-202.
Christina Hamit, Ki-Chang Nam, Nalaka sandun Abeyrathne. Bioactive peptide production and determination of functional properties using crude water extracts of Ulva lactuca (Chlorophyta) and Sargassum crassifolium (Phaeophyceae) collected from Sri Lanka.Applied Phycology 2022, 3(1), р.73-82.
O’Connor J., Garcia-Vaquero M., Meaney S., Tiwari B.K. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar. Drugs 2022, 20, р.317- 329.
Sridhar K., Inbaraj B.S., Chen B.H. Recent developments on production, purification and biological activity of marine peptides. Food Res. Int. 2021, 47, 110468.
Yanshin N., Kushnareva A., Lemesheva V., Birkemeyer C., et al.. Chemical composition and potential practical application of 15 red algal species from the White Sea Coast (the Arctic Ocean). Molecules 2021, 26, 2489.
Javier Echave, Paz Otero, Paula García-Oliveira, Paulo E.S. Munekata. Proteins and peptides derived from seaweed: promising marine bioactive substances. Antioxidants, (Basel), 2022, 11(1),р. 176- 182.
Mehdi Alboofetileh, Ali Hamzeh, Mehdi Abdollahi.Seaweed Proteins as a Source of Bioactive Peptid,Current Pharmaceutical Design,2021,27(11),р. 1342-1352.
Unniamoorthy Thiviya,Ashoka Gamage,Nalin Suranjith Gama-Arachchige et al.. Seaweeds as a Source of Functional Proteins. Phycology 2022, 2(2),р. 216-243.
Sridhar K., Inbaraj BS, Chen B.-H. Recent developments in the production, purification, and bioactivity of marine peptides. Food Res. Int. 2021,47 :110468.
Lafarga T., Acién-Fernández FG, Garcia-Vaquero M. Bioactive peptides and carbohydrates from seaweeds for food applications: natural occurrence, isolation, purification, and identification. Algal Res. 2020,48 :101909.
Chang-Feng Chi, Bin Wang.Marine Bioactive Peptides-Structure, Function and ApplicationMar Drugs. 2023 May, 21(5): 272-278.
Anas Ahmad Haseeb Ahsan. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomedical Dermatology.2020, 4(1),р.12 – 22.
Charu Deepika, Ravishankar Gokare, Dayananda Sagar, Ranga Rao Ambati.
Potential Products from Macroalgae: An Overview In book: Sustainable Global Resources Of Seaweeds,2022,Volume 1,p.17-44.
Biris-Dorhoi E.-S., Michiu D., Pop C.R., Rotar A.M. et al.. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities.Nutrients. 2020,12(10), p.1-23.
Lever J., Brkljača R., Kraft G., Urban S. Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria. Mar. Drugs. 2020,18(3), р.1-39.
Teixeira T.R., Santos G.S., Turatti I.C.C., Paziani M.H. et al.. Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography–mass spectrometry (G.C.–M.S.) Polar Biol. 2019,42,р.1431–1444.
Diana Lopes, Felisa Rey,Miguel C. Leal,Ana I. Lillebet al.. Bioactivities of Lipid Extracts and Complex Lipids from Seaweeds: Current Knowledge and Future Prospects Mar. Drugs 2021, 19(12),р. 688 -710.
Catarina Lourenço-Lopes, Maria Fraga-Corral, Cecilia Jimenez-Lopez, Antia G. Pereira et al.. Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources 2020, 9(9), p.1-30.
Saadaoui, I., Rasheed, R., Abdulrahman, N., Bounnit, T.et al.. Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Mar. Drugs 2020, 18, 197- 213..
Lucas M. Berneira, Ivandra I. de Santi, Caroline C. da Silva, Dalila Venzkeet al..
Bioactivity and composition of lipophilic metabolites extracted from Antarctic macroalgaeBraz J Microbiol. 2021 Sep, 52(3): p.1275–1285.
Ana M M Gonçalves,Silvia Lomartire.An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical ApplicationsMarine Drugs,2022,20(2), р.141-173.
Biris-DorhoiE.-S., Michiu D., Pop C.R., Rotar A.M.et al.. A.C. Macroalgae A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020, 12, p. 1-23.
Lever, J.; Brkljača, R.; Kraft, G.; Urban, S. Natural Products of Marine Macroalgae from South Eastern Australia, with Emphasis on the Port Phillip Bay and Heads Regions of Victoria. Mar. Drugs 2020, 18, p.142-181.
De Luca M., Pappalardo I., Limongi A.R., Viviano E.et al.. Lipids from Microalgae for Cosmetic Applications.Cosmetics.2021, 8,р.52-74.
Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.L.; Huang, N. Unravelling property of polysaccharides from Sargassum sp. as an anti-wrinkle and skin whitening property. Int. J. Biol. Macromol. 2019, 140,р. 216–224.
Haresh S. Kalasariya, Carlos Eliel Maya-Ramírez, João Cotas,Leonel Pereira. Cosmeceutical Significance of Seaweed: A Focus on Carbohydrates and Peptides in Skin Applications. Phycology 2024, 4(2), p.276-313.
Janssens-Böcker, C., Wiesweg, K. Doberenz, C. (2023) Exploring the Therapeutic Potential of Algae-Based Sheet Masks in Skincare: A Comprehensive Study of Cosmetological Benefits and Microbiome Balanced Interactions. Journal of Cosmetics, Dermatological Sciences and Applications, 2023, 13, p.277-301.
Calle Niemi, Junko Takahashi, András Gorzsás, Francesco G. Gentili. Quantitative and qualitative saccharide analysis of North Atlantic brown seaweed.International Journal of Biological Macromolecules,Volume 254, Part 3, January 2024, 127870
Hélène Ozanne Hechmi Toumi Benoît Roubinet,Ludovic Landemarreet al.. Laminarin Effects, a β-(1,3)-Glucan, on Skin Cell Inflammation and Oxidation. Cosmetics,2020, 7(3),р. 66-87.
Shanmugapriya Karuppusamy, Gaurav Rajauria, Stephen Fitzpatrick, Henry Lyons et al.. Biological Properties and Health-Promoting Functions of Laminarin: A Comprehensive Review of Preclinical and Clinical Studies . Mar Drugs. 2022, 20(12): 772-799.
Sheersha Pramanik, Anshul Singh, Bassam M. Abualsoud A. and others. From algae to advancements: laminarin in biomedicine RSC Adv., 2024, 14, 3209-3231.
Katarzyna Adamiak, Alina Sionkowska. State of Innovation in Alginate-Based Materials.Mar Drugs, 2023, 21(6),р.353-379.
Mariana de Sousa Santos, Pio Colepicolo, Leonardo Zambotti. Macroalgae Biorefinery for the Cosmetic Industry: Basic Concept, Green Technology, and Safety GuidelinesPhycology 2023, 3(1), p.211-241.
Tümen Erden S, Ekentok Atici C, Cömez B, Sezer AD Preparation and in vitro characterization of laminarin-based hydrogels. J. Res. Pharm. 2021; 25,р.164–172.
Huang Y, Jiang H, Mao S, Ci F. Laminarin and laminarin oligosaccharides derived from brown algae: production, biological activities, and potential applications. Journal of Ocean University of China.2021, 20, р. 641–653.
Shujun Ye,Kundong Xie,Osman Tuncay Agar, Colin J. Barrow et al..Brown Seaweed Alginates as a Promising Natural Source: A Review of Their Properties and Health Benefits.Published online: 2023, 12 Nov.
Cosmetics - Snap Natural & Alginate Products.snapalginate.com.https://snapalginate.com › cos...
Barbara Jadach, Weronika Świetlik, Anna Froelichet al.. Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer.Journal of Pharmaceutical Sciences, 2022 ,V. 111, Issue 5, p. 1250-1261.
The information you need to know about red algae in cosmetics. Typology. https://uk.typology.com › Carnet › Active Ingredients
Majid Khanzadeh , Seyed Hossein Hoseinifar, Babak Beikzadeh.Investigating the effect of hydroalcoholic extract of red algae (Laurencia caspica). Aquaculture Reports, April 2024, Volume 35, 101984.
Ya-Jing Chen , Xin Sui ,, Yue Wang, Zhi-Hui Zhaoet al..Preparation, structural characterization, biological activity, and nutritional applications of oligosaccharides. Food Chemistry X,2024 22(6):101289.
Sanjay Singh, Vaishnavi Purwar. Role ofalgae in cosmetics. International Journal of Creative Research Thoughts (IJCRT) 2022, V. 10, Issue 6 , p.73-78.
Chen X., Fu X., Huang L., Xu J., Gao X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydr.Polym. 2021, 265:118076.
Aziz E., Batool R., Khan M.U., Rauf A., et al..An overview on red algae bioactive compounds and their pharmaceutical applications. J.Altern.Complement. Med. 2021, 17, р.552-582.
Tafuro G, Costantini A, Baratto G, Francescato S et al..Characterization of polysaccharide associations for cosmetic use: rheology and texture analysis.Cosmetics.2021, 8,р.62-79.
Wang L., Jayawardena T.U., Yang H.-W., Lee H.-G., Jeon Y.J. Potential of sulfated polysaccharides isolated from the brown algae Ecklonia maxima in cosmetics: antioxidant, antimelanogenic and photoprotective activities. Antioxidants. 2020, 9, р.724.- 739.
Hentati F., Pierre G., Ursu A.V., Vial C.et al.. Rheological investigations of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Food Hydrocoll. 2020,103:105631.
Pangestuti R., Shin K.-H., Kim S.K. Anti-photoaging and potential skin health benefits of seaweeds. Mar. Drugs. 2021,19,р.172-200.
Wang L., Oh J.-Y., Lee W., Jeon Y.-J. Fucoidan isolated from Hizikia fusiforme suppresses ultraviolet B-induced photodamage. Int. J. Biol. Macromol. 2021, 166, р.751–759.
. Chen X., Fu X., Huang L., Xu J., Gao X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydr.Polym. 2021;265:118076.
Surabhi Joshi, Roshani Kumari, Vivek N. Upasani.Applications of Algae in Cosmetics: An Overview. International Journalof Innovative Research in Science, Engineering and Technology. 2018,Vol. 7, Issue 2, р.1269-1278.
Kidgell J.T., Carnachan S.M., Magnusson M., Lawton R.J. et al..Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohyd.Polym. 2021;264:118010.
Fournière M., Bedoux G., Lebonvallet N., Lescchiera R. et al..Poly-and oligosaccharide ulva sp. Fractions from enzyme-assisted extraction.Potential in antiaging dermo-cosmetic applications. Mar. Drugs. 2021,19, р.156-176.
Qingyuan Wu , Na Cheng, Danjiao Fang, Hao Wang et al..Recent advances on application of polysaccharides in cosmetics.Journal of Dermatologic Science and Cosmetic Technology, 2024,Volume 1, Issue 1, 100004.
Tang, W.; Han, T.; Liu, W.; He, J.; Liu, J. Pectic oligosaccharides: enzymatic preparation, structure, bioactivities and application Critical Reviews in Food Science and Nutrition 2024Mar 13,р. 1-17.
Mokgadi Ursula, Stanley Onwubu, Andile Khathi, Nomakhosi Mpofanaet al..Cosmeceuticals from marine: the prospect of marine products in skin rejuvenation and care, Egyptian Journal of Basic and Applied Sciences, 2024, 11:1,р. 297-317.
Yan, Y.; Wang, M.; Chen, N.; Wang, X. et al.. Isolation, structures, bioactivities, application and future prospective for polysaccharides from Tremella aurantialba: a review Frontiers in. Immunology 2022,13: 1091210
Long, J.; Ye, Z.; Li, X.; Tian, Y.et al.. Enzymatic preparation and potential applications of agar oligosaccharides: a review Critical Reviews in Food Science and Nutrition 2022, р. 1-17.
Khan, B.M.; Qiu, H.M.; Xu, S.Y.; Liu, Y.Physicochemical characterization and antioxidant activity of sulphated polysaccharides derived from Porphyra haitanensis. Int J Biol Macromol,2020, 145,р. 1155–1161.
Ali Karami, Sharif Makhmalzadeh, Pooranian M., Rezai, A. Preparation and optimization of silibinin-loaded chitosan–fucoidan hydrogel: An in vivo evaluation of skin protection against UVB. Pharm. Dev. Technol. 2021, 26, р.209–219.
LinG.-P.; WuD.-S.; XiaoX.-W.; Q.-Y Huang et al.. Structural characterization and antioxidant effect of green alga Enteromorpha prolifera polysaccharide in Caenorhabditis elegans via modulation of microRNAs. Int. J. Biol. Macromol. 2020, 150, р.1084–1092.
Mo’o F.R.C.; Wilar G.; Devkota H.P.; Wathon, N. Ulvan, a polysaccharide from Macroalga Ulva sp.: A review of chemistry, biological activities and potential for food and biomedical applications. Appl. Sci. 2020, 10, 5488- 5509.
Kidgell, J.T.; Carnachan, S.M.; Magnusson, M.; Lawton, R.J. et al.. Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohyd.Polym. 2021, 264, 118010.
Li B.; Xu H.; Wang X.; Wang Y et al.. Antioxidant and antihyperlipidemic activities of high sulfate content purified polysaccharide from Ulva pertusa. Int. J. Biol. Macromol. 2020, 146,р. 756–762.
Yu B.; Bi D.; Yao L.; Li T. et al.. The inhibitory activity of alginate against allergic reactions in an ovalbumin-induced mouse model. Food Funct. 2020, 11, р.2704–2713.
Maíra Bueno Ariede, Thalita Marcílio Candido, Ana Lucia Morocho Jacome, Maria Valéria Robles Velasco.Cosmetic attributes of algae - A review. Algal Research. 2017, Vol. 25, P. 483-487.
Abbas Sadeghi, Ali Rajabiyan, Nafise Nabizade, Najme Meygoli etal.. Seaweed-derived phenolic compounds as diverse bioactive molecules .International Journal of Biological Macromolecules. 2024May, Vol.e 266, Part 1, 131147.
João Cotas, Diana Pacheco, Pedro Monteiro, Ana M M Gonçalveset al.. 4 Marine phenolics: Extractions at low pressure. In book: Marine Phenolic Compounds. Publisher: ELSEVIER. 2023, p.115-146.
Ni Putu Ermi Hikmawanti, Sherley, Agustin, M. The effect of extraction methods on total phenolics and antioxidant activities in Caulerpa racemosa (Forsskal) J. Agardh extracts. 2023,Vitae, 30(2), р.24- 32.
Vigasini Subbiah, Faezeh Ebrahimi, Osman T. Agar, Frank R. Dunshea et al.. Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies .Pharmaceuticals (Basel). 2023 May; 16(5), р.773- 818.
Sanson S., Brunet S. Seaweed antioxidants. Antioxidants.2020,9(3)Р.11–34.
Manandhar, B.; Wagle, A.; Seong, S.H. et al.. Phlorotannins with Potential Anti-tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia stolonifera.Antioxidants 2019, 8,р. 240- 256.
Leandro, A.; Pereira, L.; Gonçalves, A.M.M. Diverse Applications of Marine Macroalgae. Mar. Drugs 2019Dec 24, 18(1):17.,р.126-138.
Pereira L. Seaweeds as source of bioactive substances and skin care therapies - Cosmeceuticals, algotherapy and thalassotherapy. Cosmetics 2018, 5(4),р. 68- 78.
Pereira L. Therapeutic and Nutritional Uses of Algae. CRC Press; Boca Raton, FL, USA: 2018 January.
Xiaojun Yan, Jinrong Zhang, Shan He, Wei Cui.The New Products from Brown Seaweeds: Fucoxanthin and Phlorotannins. Sustainable Global Resources of Seaweeds. 2022,Vol. 2, 2022, p. 181-202.
Seaweed for Cosmetic Applications .https://www.lifeasible.com › seaweed-for-cosmetic-applic...
Mekinić I.G., Skroza D., Šimat V., Hamed I.et al..Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules. 2019, 9,р.244- 255.
Arguelles, E. D. , Sapin, A. B.Bioactive properties and therapeutic potential of Padina australis Hauck. International Journal of Agricultural Technology,2022,Vol. 18(1).р.13-34.
Kumar L.R., Paul P.T., Anas K.K., Tejpal C.S.et al.. Phlorotannins–bioactivity and extraction perspectives. J. Appl. Phycol. 2022;34, р.2173–2185.
Coralie Rousseau, Gautier Demoulinger, Sylvie Rousvoal, Delphine Champeval et al..A review on the chemical ecology of the Fucaceae holobionts: from fundamental knowledge to applications.Comptes Rendus Chimie, 2024,35, р. 1-26.
Fazlurrahman Khan, Geum-Jae Jeong, Mohd Sajjad Ahmad Khan, Nazia Tabassum. Seaweed-Derived Phlorotannins: A Review of Multiple Biological Roles and Action Mechanisms.Mar Drugs. 2022, 20(6), р. 384-415.
M. D. Catarino, S. M. G. Pires, S. Silva, F. Costa, et al..Overview of Phlorotannins’ Constituents in Fucales.Marine Drugs, 2022, 20(12).р. 754- 781.
Leonel Pereira, Ana Valado. Harnessing the power of seaweed: unveiling the potential of marine algae in drug discovery. Exploration of Drug Science, 2023, p. 475-496
Maheshwari V. Babu PAS Phlorotannins and their derivatives, potential antiviral molecules from brown algae, a review. Russ. J. Mar. Biol. 2022;48,р.309–324.
De Lima Cherubim D.J., Buzanello Martins C.V., Oliveira Fariña L., da Silva de Lucca R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol. 2020, 19,р.33–37.
Susano P., Silva J., Alves C., Martins A. et al..Unravelling the Dermatological Potential of the Brown Seaweed Carpomitra costata.Mar. Drugs. 2021,19,р.135-147.
Yoon Ji Kwon, Oh Ig Kwon, Hye Jeong Hwang. Hyeon-Cheol Shin et al..
Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders Front. Mol. Neurosci., 2023 ,Volume 16.
Catarino M.D., Amarante S.J., Mateus N., Silva A.M.S., Cardoso S.M. Brown algae phlorotannins: A marine alternative to break the oxidative stress, inflammation and cancer network. Foods. 2021, 10(7),р.1478.
Rajan D.K., Mohan K., Zhang S., Ganesan A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed.Pharmacother. 2021,142:111988.
Camila F. Secco Bastos, Maria Carpen, Franklin Chamorro, Rafael Nogueira-Marqueset al..Phlorotannins as Bioactive Agents from Brown Algae: Chemical Characterization and Extraction Methods. Proceedings, 2024, 103(1), 63- 75.
Hui Dong, Songtao Dong, Poul Erik Hansen, Dimitrios Stagos et al..Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar Drugs. 2020, 18(8): 411.
Hui Dong, Poul Erik Hansen, Songtao Dong, Dimitrios Stagoset al..Marine natural bromophenols: Sources, structures, main bioactivities, and toxicity. In book: Marine Phenolic Compound. 2023, p.87-112.
C. Landa-Cansigno, E. Serviere-Zaragoza, T.K. Morales-Martínez, J.A. Ascacio-Valdes et al.. The antioxidant and anti-elastase activity of the brown seaweed Sargassum horridum (Fucales, Phaeophyceae) and their early phenolics and saponins profiling for green cosmetic applications. Algal Research, V. 75, 2023, 103271.
Houssem Boulebd. Mechanistic Insights into the Antioxidant and Pro-oxidant Activities of Bromophenols from Marine Algae: A DFT Investigation. The Journal of Organic Chemistry 2024, 89 (11),р. 8168-8177.
Dong H., Wang L., Guo M., Stagos D. et al.. Antioxidant and Anticancer Activities of Synthesized Methylated and Acetylated Derivatives of Natural Bromophenols. Antioxidants. 2022,11, р.786-804.
Ryu Y.S., Fernando P.D.S.M., Kang K.A., Piao M.J. et al..Marine compound 3-bromo-4,5-dihydroxybenzaldehyde protects skin cells against oxidative damage via the Nrf2/HO-1 pathway. Mar. Drugs. 2019, 17,р.234-250.
Cho S.H., Heo S.J., Yang H.W., Ko E.Y.et al.. Protective effect of 3-bromo-4,5-dihydroxybenzaldehyde from Polysiphonia morrowii harvey against hydrogen peroxide-induced oxidative stress in vitro and in vivo. J. Microbiol. Biotechnol. 2019, 29,р.1193–1203.
Kim K., Hyun Y., Hewage S.R., Piao M.et al.. 3-bromo-4,5-dihydroxybenzaldehyde enhances the level of reduced glutathione via the Nrf2-mediated pathway in human keratinocytes. Mar. Drugs. 2017, р.152-162.
Pilar Fallas Rodríguez, Laura Murillo-González, Evelyn Rodríguez, Ana M. Pérez. Marine phenolic compounds: Sources, commercial value, and biological activities. Marine Phenolic Compounds, 2023, p. 47-86.
Riwanti, P., Mahmiah, M., Juniar, K. Antioxidant activity of brown algae extract (Sargassum sp): A review”, Science Midwifery, 2024,11(6), p. 962-970.
Ferdous U.T., Balia Yusof Z.N. Insight into Potential Anticancer Activity of Algal Flavonoids: Current Status and Challenges. Molecules. 2021, 26,р.6844-6859.
Xiao X., Li C., Huang H., Lee Y.P. Inhibition effect of natural flavonoids on red tide alga Phaeocystis globosa and its quantitative structure-activity relationship. Environ. Sci. Pollut. Res. 2019;26,р.23763–23776.
Maheswari Vinodkumar. Effective Isolation of Brown Seaweed Flavonoids with Their Potential to Inhibit Free Radicals and Proliferative Cells .Journal of Inorganic and Organometallic Polymers and Materials,2023,33(12), р.1-11.
Azhagu Saravana, Babu Packirisamy, Umme Tamanna Ferdous, Zetty Balia Yusof. Insight into Potential Anticancer Activity of Algal Flavonoids: Current Status and Challenges. Molecules, 2021, 26(22), 6844.
Francisco Canindé Ferreira, Wallax Augusto Silva, Samir Mansour Moraes,Edivaldo Herculano Correa et al..Anticancer Potential of Flavonoids: An Overview with an Emphasis on Tangeretin Pharmaceuticals 2023, 16(9), 1229.
M. M. V. Sasadara, I Gede Putu Wirawan.Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.)Seaweed.3rd international conference on bioscience and biotechnology.Lombok, Indonesia. 2021,Vol. 712(1).
Nedeljka N Rosic, Mike Climstein, Glen M Boyle, Thanh Nguyen. Exploring Mycosporine-like Amino Acid UV-Absorbing Natural Products for a New Generation of Environmentally Friendly.Marine Drugs 2023,21(4),р.253 – 261.
Fanny Lalegerie , Valérie Stiger-Pouvreau, Solène Connan.Mycosporine-like Amino Acids in Palmaria palmata (Rhodophyta): Specific Implication of Usujirene in Photoprotection.Marine Drugs, 2024,22(3),р.121-135
Copyright (c) 2025 Georgian Scientists

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.