NON-STATIONARY TRANSMISSION OF HEAT AND HYGROSCOPIC MASS BETWEEN VENTIIATION FLOW OF METRO AND SURROUNDING MINING MASSIF
PDF (ქართული)

Keywords

Ventilation
air conditioning
heating and illuminationof mines

How to Cite

Lanchava, O., Arudashvili, N., & Khokerashvili, Z. (2021). NON-STATIONARY TRANSMISSION OF HEAT AND HYGROSCOPIC MASS BETWEEN VENTIIATION FLOW OF METRO AND SURROUNDING MINING MASSIF: Print version was published: Mining Journal 1(140), 2018. Georgian Scientists, 3(2). https://doi.org/10.52340/gs.2021.305

Abstract

According to modern technologies of construction and operation of transport tunnels, it is assumed in the present work that drainage of water does not occur inside the membrane in the area of reinforced coating of the tunnel and here takes place a non-stationary process  of transfer  of hygroscopic  mass  (moisture) together with а similar process of heat transfer between the ventilation stream and the surrounding mining massif. Thus, we have to deal only with the sorption mass content in the pores of the massif and the water in  the  explicit form in  the  tunnels  can  only be  in exceptional cases as local sources and therefore, their influence on the ventilation flow should be considered separately. The paper provides results of mathematical modeling of heat and mass transfer processes as well as  graphs  and  nomograms,  which  can  be  used  to define non-stationary coefficients of the heat and mass transmission required for thermal physics calculation of  underground  ventilation.  The  additional  flows initiated  by  the  Soret  and  Dufour  effects  usually strengthen the main flows, but in practice one can find a case where it is not necessary to take into account the effect of additional flows. Based on the analysis of processes, the criteria that determine the numerical value  of these  show  the  case when  accounting for additional flows of Soret and Dufour is mandatory. The marked effects can be ignored when 106 Lα=1.

https://doi.org/10.52340/gs.2021.305
PDF (ქართული)

References

Лыков A.B. Tепломассообмен. Энергия, Москва, 1978. 480 с.

Кремнев O. A., Журавленко B. Я. Тепло- и массообмен в горном массиве и подземных сооружениях. Наукова думка, Киев, 1980. 384 с.

Lanchava О., Ilias N. Some issues of thermal calculation of ventilation air for the metro. Journal of Engineering Sciences and Innovation. Volume 2, Issue 2, Bucharest, Romania, 2017. pp. 92-105.

Lanchava О. Separation and Evaluation of Simultaneous HeatMass Exchange in Binary Systems. 2005, pp. 400-404, Bull. Georg. Acad. Sci. http://scienge.org.ge/old/moambe/Summary-172-3.htm

Кутателадзе CC Анализ подобия в теплофизике. Наука, Новосибирск, 1982. 308 c.

Ланчава О.А. O тепломассообмене в капитальных горных выработках. ФТПРШЛ, N26, Наука, Новосибирск, 1982. с. 87-92.

Ланчава О. А. О тепломассообмене в свежвпроиденных горных выработках. ФТПРГШ, N25, Наухка, Новосибирск, 1985. с. 99-104.

Ониани Ш.И., Ланчава О.А. Единая методика прогнозирования температурных условий в угольных шахтах. Макеевка-Донбасс, 1979. 196 с.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2021 Omar Lanchava, Nino Arudashvili, Zaza Khokerashvili

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...