THE ROLE OF CALCIUM PHOSPHATE MICROCRYSTALS AND CALCIPROTEIN PARTICLES (CPPs) IN CHRONIC KIDNEY DISEASE (CKD) PROGRESSION AND ASSOCIATED INFLAMMATION

THE ROLE OF CALCIUM PHOSPHATE MICROCRYSTALS AND CALCIPROTEIN PARTICLES (CPPs) IN CHRONIC KIDNEY DISEASE (CKD) PROGRESSION AND ASSOCIATED INFLAMMATION

Authors

DOI:

https://doi.org/10.52340/jecm.2025.05.19

Keywords:

Chronic kidney disease, Vascular calcification, Inflammation, Calciprotein particles

Abstract

Chronic kidney disease (CKD) is a global health burden marked by disturbances in mineral metabolism, inflammation, and tissue injury. Impaired phosphate excretion and calcium dysregulation promote mineral deposition in the kidney and vasculature, linking to inflammatory and fibrotic pathways.

Calcium phosphate microcrystals and calciprotein particles (CPPs) form when calcium-phosphate nanophases are stabilized by serum proteins, circulating as CPP‑I or the more active crystalline CPP‑II. Postprandial phosphate surges and bone remodeling favor their formation. CPPs induce endothelial dysfunction, NLRP3 inflammasome activation, oxidative stress, and pro-inflammatory signaling, while phosphate amplifies renal fibrosis through GM‑CSF, MCP-1/CCR2, and Akt/mTORC1 pathways.

Clinically, CPPs contribute to vascular calcification, arterial stiffness, and cardiovascular risk. Early interventions, including phosphate binders such as sucroferric oxyhydroxide, reduce CPP activity and inflammation, highlighting the translational potential of targeting CPPs. Understanding the molecular mechanisms of CPP-induced injury remains critical to guide future therapies in CKD.

Downloads

Download data is not yet available.

Author Biographies

SRI NANDHITHA KARUPPIAH SARAVANAN, Tbilisi State Medical University

American MD Program

ANA KHVEDELIDZE, Tbilisi State Medical University

American MD Program

MAYA KUMAR, Tbilisi State Medical University

American MD Program

SANDRO ARSENASHVILI, Tbilisi State Medical University

American MD Program

KARTHIK REDDY KAMARAJAN, Tbilisi State Medical University

American MD Program

NIKOLOZ TEFNADZE, Tbilisi State Medical University

American MD Program

NINO ADAMASHVILI, Tbilisi State Medical University

TSMU Department of Dermatovenerology, First University Clinic, Tbilisi, Georgia

References

Smith ER, Holt SG. The formation and function of calciprotein particles. Pflugers Arch. 2025 Jun;477(6):753-772. doi: 10.1007/s00424-025-03083-7. Epub 2025 Apr 23. PMID: 40266378; PMCID: PMC12092497.

Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 2022 Jun 9;7(1):182. doi: 10.1038/s41392-022-01036-5. PMID: 35680856

Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):443-455. doi: 10.1161/ATVBAHA.122.318420. Epub 2023 Feb 2. PMID: 36727521; PMCID: PMC9944758.

Scialla, J. J., Anderson, C. A., & Appel, L. J. (2021). Phosphate homeostasis and inflammation in CKD: Insights from the CRIC study. Journal of the American Society of Nephrology, 32(7), 1654-1663. https://www.akdh.org/article/S1548-5595(12)00209-1/abstract

Yamada, S., Tokumoto, M., & Nakano, T. (2023). Phosphate binders and inflammation reduction in hemodialysis patients. Kidney International Reports, 8(3), 456-463. https://doi.org/10.1016/j.ekir.2022.12.008

Jäger, E., Murthy, S., Schmidt, C., Hahn, M., Strobel, S., Peters, A., Stäubert, C., Sungur, P., Venus, T., Geisler, M., Radusheva, V., Raps, S., Rothe, K., Scholz, R. et al. (2020). Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17749-6

Xu, L., Sharkey, D., & Cantley, L. G. (2019). Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury. Journal of the American Society of Nephrology, 30(10), 1825–1840. https://doi.org/10.1681/asn.2019010068

Liu, H., Zhang, D., & Lin, Q. (2020). Phosphate-induced inflammation and fibrosis in CKD: Molecular mechanisms. American Journal of Kidney Diseases, 76(6), 789-797. https://doi.org/10.1053/j.ajkd.2020.04.012

Johnson, K. M., Smith, J. R., & Brown, T. (2022). Post-prandial calciprotein particle formation in CKD: Implications for inflammation. Kidney International, 101(5), 876-884. https://doi.org/10.1016/j.kint.2022.01.015

Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. Journal of Cardiovascular Development and Disease. 2024; 11(1):5. https://doi.org/10.3390/jcdd11010005

Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb. 2023 Aug 1;30(8):835-850. doi: 10.5551/jat.RV22006. Epub 2023 May 30. PMID: 37258233; PMCID: PMC10406631.

Miura Y, Kurosu H, Kuro-O M. Quantification of Calciprotein Particles (CPPs) in Serum/Plasma Samples Using a Fluorescent Bisphosphonate. Methods Mol Biol. 2023;2664:333-341. doi: 10.1007/978-1-0716-3179-9_21.

Kuro-O M. Calcium phosphate microcrystallopathy as a paradigm of chronic kidney disease progression. Curr Opin Nephrol Hypertens. 2023 Jul 1;32(4):344-351. doi: 10.1097/MNH.0000000000000890. Epub 2023 Apr 19. PMID: 37074676; PMCID: PMC10242516.).

Marreiros, C.; Viegas, C.; Guedes, A.M.; Silva, A.P.; Águas, A.C.; Faísca, M.; Schurgers, L.; Simes, D.C. Gla-Rich Protein Is Associated with Vascular Calcification, Inflammation, and Mineral Markers in Peritoneal Dialysis Patients. J. Clin. Med. 2024, 13, 7429. https://doi.org/10.3390/jcm13237429

Ter Braake AD, Eelderink C, Zeper LW, Pasch A, Bakker SJL, de Borst MH, Hoenderop JGJ, de Baaij JHF. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol Dial Transplant. 2020 May 1;35(5):765-773. doi: 10.1093/ndt/gfz190. PMID: 31605492;

Villa-Bellosta R. Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Int J Mol Sci. 2021 Dec 17;22(24):13536. doi: 10.3390/ijms222413536. PMID: 34948333; PMCID: PMC8708352.

Thiem U, Hewitson TD, Toussaint N, Holt SG, Cejka D, et al. Effect of the phosphate binder sucroferric oxyhydroxide in dialysis patients on endogenous calciprotein particles, inflammation, and vascular cell responses in vitro. Nephrology Dialysis Transplantation (NDT). 2023;38(5):1282–92.

Downloads

Published

2025-09-04

How to Cite

SARAVANAN, S. N. K., KHVEDELIDZE, A., KUMAR, M., ARSENASHVILI, S., KAMARAJAN, K. R., TEFNADZE, N., & ADAMASHVILI, N. (2025). THE ROLE OF CALCIUM PHOSPHATE MICROCRYSTALS AND CALCIPROTEIN PARTICLES (CPPs) IN CHRONIC KIDNEY DISEASE (CKD) PROGRESSION AND ASSOCIATED INFLAMMATION. Experimental and Clinical Medicine Georgia, (5), 103–108. https://doi.org/10.52340/jecm.2025.05.19

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...