THE ROLE OF CALCIUM PHOSPHATE MICROCRYSTALS AND CALCIPROTEIN PARTICLES (CPPs) IN CHRONIC KIDNEY DISEASE (CKD) PROGRESSION AND ASSOCIATED INFLAMMATION
DOI:
https://doi.org/10.52340/jecm.2025.05.19Keywords:
Chronic kidney disease, Vascular calcification, Inflammation, Calciprotein particlesAbstract
Chronic kidney disease (CKD) is a global health burden marked by disturbances in mineral metabolism, inflammation, and tissue injury. Impaired phosphate excretion and calcium dysregulation promote mineral deposition in the kidney and vasculature, linking to inflammatory and fibrotic pathways.
Calcium phosphate microcrystals and calciprotein particles (CPPs) form when calcium-phosphate nanophases are stabilized by serum proteins, circulating as CPP‑I or the more active crystalline CPP‑II. Postprandial phosphate surges and bone remodeling favor their formation. CPPs induce endothelial dysfunction, NLRP3 inflammasome activation, oxidative stress, and pro-inflammatory signaling, while phosphate amplifies renal fibrosis through GM‑CSF, MCP-1/CCR2, and Akt/mTORC1 pathways.
Clinically, CPPs contribute to vascular calcification, arterial stiffness, and cardiovascular risk. Early interventions, including phosphate binders such as sucroferric oxyhydroxide, reduce CPP activity and inflammation, highlighting the translational potential of targeting CPPs. Understanding the molecular mechanisms of CPP-induced injury remains critical to guide future therapies in CKD.
Downloads
References
Smith ER, Holt SG. The formation and function of calciprotein particles. Pflugers Arch. 2025 Jun;477(6):753-772. doi: 10.1007/s00424-025-03083-7. Epub 2025 Apr 23. PMID: 40266378; PMCID: PMC12092497.
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther. 2022 Jun 9;7(1):182. doi: 10.1038/s41392-022-01036-5. PMID: 35680856
Feenstra L, Kutikhin AG, Shishkova DK, Buikema H, Zeper LW, Bourgonje AR, Krenning G, Hillebrands JL. Calciprotein Particles Induce Endothelial Dysfunction by Impairing Endothelial Nitric Oxide Metabolism. Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):443-455. doi: 10.1161/ATVBAHA.122.318420. Epub 2023 Feb 2. PMID: 36727521; PMCID: PMC9944758.
Scialla, J. J., Anderson, C. A., & Appel, L. J. (2021). Phosphate homeostasis and inflammation in CKD: Insights from the CRIC study. Journal of the American Society of Nephrology, 32(7), 1654-1663. https://www.akdh.org/article/S1548-5595(12)00209-1/abstract
Yamada, S., Tokumoto, M., & Nakano, T. (2023). Phosphate binders and inflammation reduction in hemodialysis patients. Kidney International Reports, 8(3), 456-463. https://doi.org/10.1016/j.ekir.2022.12.008
Jäger, E., Murthy, S., Schmidt, C., Hahn, M., Strobel, S., Peters, A., Stäubert, C., Sungur, P., Venus, T., Geisler, M., Radusheva, V., Raps, S., Rothe, K., Scholz, R. et al. (2020). Calcium-sensing receptor-mediated NLRP3 inflammasome response to calciprotein particles drives inflammation in rheumatoid arthritis. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17749-6
Xu, L., Sharkey, D., & Cantley, L. G. (2019). Tubular GM-CSF Promotes Late MCP-1/CCR2-Mediated Fibrosis and Inflammation after Ischemia/Reperfusion Injury. Journal of the American Society of Nephrology, 30(10), 1825–1840. https://doi.org/10.1681/asn.2019010068
Liu, H., Zhang, D., & Lin, Q. (2020). Phosphate-induced inflammation and fibrosis in CKD: Molecular mechanisms. American Journal of Kidney Diseases, 76(6), 789-797. https://doi.org/10.1053/j.ajkd.2020.04.012
Johnson, K. M., Smith, J. R., & Brown, T. (2022). Post-prandial calciprotein particle formation in CKD: Implications for inflammation. Kidney International, 101(5), 876-884. https://doi.org/10.1016/j.kint.2022.01.015
Shishkova D, Lobov A, Repkin E, Markova V, Markova Y, Sinitskaya A, Sinitsky M, Kondratiev E, Torgunakova E, Kutikhin A. Calciprotein Particles Induce Cellular Compartment-Specific Proteome Alterations in Human Arterial Endothelial Cells. Journal of Cardiovascular Development and Disease. 2024; 11(1):5. https://doi.org/10.3390/jcdd11010005
Yamada S, Nakano T. Role of Chronic Kidney Disease (CKD)-Mineral and Bone Disorder (MBD) in the Pathogenesis of Cardiovascular Disease in CKD. J Atheroscler Thromb. 2023 Aug 1;30(8):835-850. doi: 10.5551/jat.RV22006. Epub 2023 May 30. PMID: 37258233; PMCID: PMC10406631.
Miura Y, Kurosu H, Kuro-O M. Quantification of Calciprotein Particles (CPPs) in Serum/Plasma Samples Using a Fluorescent Bisphosphonate. Methods Mol Biol. 2023;2664:333-341. doi: 10.1007/978-1-0716-3179-9_21.
Kuro-O M. Calcium phosphate microcrystallopathy as a paradigm of chronic kidney disease progression. Curr Opin Nephrol Hypertens. 2023 Jul 1;32(4):344-351. doi: 10.1097/MNH.0000000000000890. Epub 2023 Apr 19. PMID: 37074676; PMCID: PMC10242516.).
Marreiros, C.; Viegas, C.; Guedes, A.M.; Silva, A.P.; Águas, A.C.; Faísca, M.; Schurgers, L.; Simes, D.C. Gla-Rich Protein Is Associated with Vascular Calcification, Inflammation, and Mineral Markers in Peritoneal Dialysis Patients. J. Clin. Med. 2024, 13, 7429. https://doi.org/10.3390/jcm13237429
Ter Braake AD, Eelderink C, Zeper LW, Pasch A, Bakker SJL, de Borst MH, Hoenderop JGJ, de Baaij JHF. Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrol Dial Transplant. 2020 May 1;35(5):765-773. doi: 10.1093/ndt/gfz190. PMID: 31605492;
Villa-Bellosta R. Vascular Calcification: Key Roles of Phosphate and Pyrophosphate. Int J Mol Sci. 2021 Dec 17;22(24):13536. doi: 10.3390/ijms222413536. PMID: 34948333; PMCID: PMC8708352.
Thiem U, Hewitson TD, Toussaint N, Holt SG, Cejka D, et al. Effect of the phosphate binder sucroferric oxyhydroxide in dialysis patients on endogenous calciprotein particles, inflammation, and vascular cell responses in vitro. Nephrology Dialysis Transplantation (NDT). 2023;38(5):1282–92.
