RADIOPROTECTIVE PROPERTIES OF VENOM OF TRANSCAUCASIAN VIPERA (MACROVIPERA LEBETINA OBTUSA DYIGUBSKY, 1832)
DOI:
https://doi.org/10.52340/jecm.2022.07.10Keywords:
venom, radioprotective properties, Macrovipera lebetina obtusa, gamma irradiationAbstract
The article presents experimental data on the study of the anti-ray effect of venom of Transcaucasian vipera (Macrovipera lebetina obtusa), which is based on nonspecific mechanisms of the activation reaction. The results of the study showed that snake venom has a pronounced radioprotective effect. It was found experimentally that, in fractional gamma irradiation of mice at doses of 1.2, 3, 4, 5, 6 Gy, followed by 2 mg / kg and 4 mg / kg of poisoning, observed an increase in the life span of mice from 28-30 and 15 -20 minutes to 50.0 ± 2.7, 95.0 ± 6.2; 60.0 ± 5.3, 100.0 ± 8.1; 70.0 ± 15.1, 130.0 ± 12.5; 85.0 ± 11.5, 170.0 ± 19.3; 95.0 ± 13.5, 200.0 ± 29.0; 110.0 ± 15.5, 250.0 ± 20.7 minutes respectively. The results of the study of the radio protective properties of snake venom revealed that venom of Transcaucasian vipera (Macrovipera lebetina obtusa), at injection in a non-toxic dose, is a long-acting radio protector capable of effectively protecting living organisms from fractional gamma irradiation.
Downloads
References
BERDYEVA A.T. (1990) Pathophysiological aspects of the toxicological action of snake venoms. Ylym: Ashgaba,163.
ORLOV B.N., GELASHVILI D.B. (1985) Zootoxinology (poisonous animals and their poisons), High School: Moscow, 280.
ORLOV B.N., GELASHVILI D.B., IBRAGIMOV A.K. (1990) Poisonous animals and plants of the USSR, Higher School:Moscow, 271.
www.volgmed.ru//47748.metodicheskie_ukazaniya_po_vypolneniyu_kontr_rab_p
www.unn.ru/books/met_files/apiterapia.
KORYAGIN A.S., EROFEEVA E.A., GAMOVA O.N., VANEEVA O.YU. (2006) Adaptogenic properties of bee venom under fractional gamma irradiation // Innovative technologies in beekeeping. Materials of the scientific-practical conference, Fish, 247-249.
LEÓN G., SÁNCHEZ L., HERNÁNDEZ A., VILLALTA M., HERRERA M. (2011) Immune response towards snake venoms. Inflamm Allergy Drug Targets, 10, 381-398.
DUBOVSKII P.V., KONSHINA A.G., EFREMOV R.G. (2013) Cobra cardio toxins: membrane interactions and pharmacological potential. Curr Med Chem., 21, 270-287.
VYAS V., BRAHMBHATT K., BHATT H., PARMAR U., PATIDAR R. (2013) Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed, 3, 156-162.
MARSH N., WILLIAMS V. (2005) Practical applications of snake venom toxins in haemostatic. Toxicon, 45, 1171-1181.
MOISEEVA N., BAU R., SWENSON S.D., MARKLAND F.S., CHOE J.Y., LIU Z.J., ALLAIRE M. (2008) Structure of acostatin, a dimeric disintegrin from Southern copperhead (Agkistrodon contortrix contortrix), at 1. A resolution. Acta Crystallogr. D. Biol. Crystallogr., 64, 466–470.
ADLER M., LAZARUS R.A., DENNIS M.S., WAGNER G. (1991) Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science, 253, 445–448.
MONLEON D., ESTEVE V, KOVACS H, CALVETE J., CELDA B. (2005) Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem. J., 387, 57–66.
FUJII Y., OKUDA D., FUJIMOTO Z, HORII K., MORITA T., MIZUNO H. (2010) Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J. Mol. Biol., 332, 1115–1122.
SHIN J., HONG S.Y., CHUNG K., KANG I., JANG Y., KIM D.S., LEE W. (2003) Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom. Biochemistry, 42, 14408–14415.