Indentation induced structural changes in boron-doped silicon irradiated with electrons

p-type silicon high-energy electrons Vickers indenter elastic modulus contact pressure electrical resistivity holes mobility

Authors

Downloads

A complex study of the microstructure, electrophysical properties, and structural phase transformations in the processes of ultramicroindentation of boron-doped monocrystalline silicon substrates with (111) crystallographic orientation in the initial and irradiated state was carried out. It is shown, that irradiation of p-Si samples by 12 meV  energy electrons  with fluences 1013 cm-2 stipulates decrease of the specific electrical resistivity by 3 times and holes mobility by 20% . In infrared absorption spectra of the electron irradiated samples, decrease of  the oxygen and carbon atoms concentration by 2,5 -3 times is detected. By  Load-displacement measurements during the indentation processes with a Vickers indenter on the (111) planes of the research sample irradiated with electrons a weak increase of the elastic modulus and the average contact pressure corresponding to the transformations of the  unstable phases of silicon is revealed. The contribution of electron irradiation modified dislocation atmospheres in the  characteristics of electrophysical properties and structural phase changes carried out in the indentation processes in boron-doped silicon is discussed. The reasons for the variation of the dynamic  mechanical and electrophysical properties related to the modification of dislocation structure atmospheres induced by electron irradiation in monocrystalline p-Si : B samples are analyzed.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.