NENEWLY ASSESSED TRIGLYCERIDE LEVELS AND RESIDUAL RISK OF ATHEROSCLEROSIS

NENEWLY ASSESSED TRIGLYCERIDE LEVELS AND RESIDUAL RISK OF ATHEROSCLEROSIS

Authors

DOI:

https://doi.org/10.52340/jecm.2024.05.12

Keywords:

Triglyceride, atherosclerosis, CVD, risk

Abstract

Morbidity and mortality caused by atherosclerotic cardiovascular disease (CVD) remain a major challenge in modern medicine. Extensive prospective studies of epidemiologic, genetic, and clinical data clearly demonstrate that LDL-cholesterol is a major risk factor for atherosclerosis and cardiovascular disease risk. In recent years, LDL-C levels have decreased with active intervention. Nevertheless, the so-called development of atherosclerosis and cardiovascular diseases (CVD) remained in a certain part of patients as known as Residual risk. One of the risk factors for this is an increase level of triglycerides (HTG) and lipoproteins containing triglycerides (Lp-TG) in the blood serum.

Aim of the study: The aim of this review article is to show that, despite the widely studied and generally recognized pharmacological means of reducing the level of triglycerides and triglyceride-containing lipoproteins (Lp-TG) in the treatment of dyslipidemia, due to the global nature of the problem, the questions need to be answered. It is necessary to obtain information and consider new perspectives. The article discusses the relationship between elevated triglyceride (TG) and triglyceride-replacing lipoprotein (Lp-TG) levels and residual risk of atherosclerosis.

Materials and Methods: Morbidity and mortality caused by atherosclerotic diseases are still the main challenge of modern medicine. Cardiovascular diseases (CVD) do not lose their relevance. This is indicated by the 2021 guideline for the reduction of cardiovascular disease of the European Society of Cardiology. There is found and indicated reductions based on which it was determined that even when the target level of LDL-C is reached, there is still a residual risk of developing CVD. The article discusses the studies based on the relationship between the increase in the level of triglycerides (TG) and triglyceride-replacing lipoproteins (Lp-TG) and the risk of developing atherosclerosis. Although the reduction of LDL-C level is the main fact of pharmacotherapy of dyslipidemia, the article deals with the current results of TG-lowering agents and the role of fibrates in this therapy, which are recognized by modern guidelines as the most effective class of TG-lowering agents.

Conclusion: Cardiovascular diseases do not lose their relevance. This is indicated by the 2021 guideline for the reduction of cardiovascular disease of the European Society of Cardiology. Replacement of the SKORE table for the fatal risk of cardiovascular disease, which was widely implemented until now, with the SKORE -2 and SKORE OP (OLD PERSON) tables, where total cholesterol was replaced by non-DHL as one of the important predictors of the residual risk of atherosclerosis. The question that the therapy of dyslipidemia was subject to revision was raised, the picture was exacerbated in recent years by the increase in patients diagnosed with metabolic syndrome, obesity, diabetes mellitus type-2, whose blood (TG) and LDL-C levels were quite high. While hypolipidemic (high-intensity statins, ezetimibe, monoclonal antibodies) significantly decreases (up to the norm and below) the level of LDL.

Downloads

Download data is not yet available.

References

WHO (2021). Cardiovascular Diseases (CVDs). URL: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (date of access January26, 2023)

Ference B.A., Ginsberg H.N., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel // Eur. Heart J. 2017. Vol. 38, N 32. P. 2459–2472.

Wojcik C. Emerging lipid lowering agents targeting LDL cholesterol. Postgrad Medicine. 2020;132(5):433-40

Mach F, Baigent C, Catapano AL, Koskinas KC, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. European Heart Journal. 2020;41(1):111–88. DOI: 10.1093 /eurheartj/ehz 45510.1080/00325481.2020.17514228.

Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE et al. Initial Invasive or Conservative Strategy for Stable Coronary Disease. New England Journal of Medicine. 2020;382(15):1395–407.DOI10.1056/NEJMoa19159229.

Bershteyn L.L., Zbyshevskaya E.V., Katamadze N.O., Andreeva A.E. et al. ISCHEMIA –the Largest Ever Randomized Study in Stable Coronary Artery Disease. Baseline Characteristics of Enrolled Patients in One Russian Site. Kardiologiia. 2017;57(10):12–9.

Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. New England Journal of Medicine. 2017;376(18):1713–22. DOI:10.1056/ NEJMoa1615664

Giugliano RP, Pedersen TR, Park J-G, De Ferrari GM, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. The Lancet. 2017; 390 (10106): 1962–71.

Generoso G., Janovsky C.C.P.S, Bittencourt M.S. Triglycerides and triglyceride rich lipoproteins in the development and progression of atherosclerosis // Curr. Opin. Endocrinol. Diabetes Obes. 2019. Vol. 26, N 2. P. 109–116. DOI: https://www.doi.org/10.1097/MED.0000000000000468

Nordestgaard L.T., Christoffersen M., Afzal S. et al. Triglycerides as a shared risk factor between dementia and atherosclerotic cardiovascular disease: a study of125 727 individuals // Clin.Chem. 2021. Vol. 67, N 1. P. 245–255. DOI: https://www.doi.org/10.1093/clinchem/hvaa26

Sarwar N, Danesh J, Eiriksdottir G, Sigurdsson G, Wareham N, Bingham S, Boekholdt SM, Khaw KT, Gudnason V 2007 Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 115:450–458

Patel A, Barzi F, Jamrozik K, Lam TH, Ueshima H, Whitlock G, Woodward M; Asia Pacific Cohort Studies Collaboration 2004 Serum triglycerides as a risk factor for cardiovascular diseases in the Asia-Pacificregion. Circulation 110:2678–268

Tirosh A, Rudich A, Shochat T, Tekes-Manova D, Israeli E, Henkin Y, Kochba I, Shai I 2007 Changes in triglyceride levels and risk for coronary heart disease in young men. Ann Intern Med 147: 377–385

Danesh J, Erqou S, Walker M, Thompson SG, et al. 2007 The Emerging Risk Factors Collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol 22:839–869

Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A 2007 Non fasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298:299–308

Teslovich T.M., Musunuru K., Smith A.V. et al. Biological, clinical and population relevance of 95 loci for blood lipids//Nature. 2010. Vol. 466, N7307. P.707–713. DOI: https://www. doi.org/ 10.1038/nature0927

Schunkert H., König I.R., Kathiresan S. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease // Nat. Genet. 2011.Vol. 43, N 4. P. 333–338.

Mach F, Baigent C, Catapano A.L. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk // Eur. Heart J. 2020. Vol. 41, N 1.P.111–188.

Visseren F.L.J., Mach F., Smulders Y.M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice //Eur.Heart J. 2021.Vol.42,

Российские клинические рекомендации по нарушениям липидного об-мена, утвержденные Минздравом России(2023г.).URL: https://cr.minzdrav.gov.ru/recomend/ 752_134. P. 3227–3337. DOI: https://www.doi.org/10.1093/eurheartj/ehab484

Zhang B.H., Yin F., Qiao Y.N. et al. Triglyceride and triglyceride-rich lipoproteins in atherosclerosis // Front. Mol. Biosci. 2022. Vol. 9. P. 909151.

De Carvalho C.C.C.R., Caramujo M.J. The various roles of fatty acids // Molecules.2018. Vol. 23,N10.P. 2583. DOI:https://www.doi.org/ 10.3390/molecules23102583org /10.3389/fmolb. 2022.909151

Nordestgaard B.G., Benn M., Schnohr P. et al. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women // JAMA.2007. Vol. 298, N 3. P. 299–308. DOI: https://www.doi.org/10.1001/jama.298.3.299

Fruchart J.C., Santos R.D., Aguilar-Salinas C. et al. The selective peroxisomeproliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential: A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R 3i) Foundation // Cardiovasc. Diabetol. 2019. Vol.18, N1.P71

Masuda D., Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins // J. Atheroscler. Thromb 2017. Vol. 24,N2.P.95-109.DOI: https://www.doi.org/10.5551/jat.RV16003g/10.1186/s12933-019-0864-7

Fogelstrand P., Borén J. Retention of atherogenic lipoproteins in the artery wall and its role in atherogenesis // Nutr. Metab. Cardiovasc. Dis. 2012. Vol. 22, N1. P.1–7. DOI: https://www.doi.org/10.1016/j.numecd.2011.09.007

Zhang X., Sessa W.C., Fernández-Hernando C. Endothelial transcytosis of lipoproteins in atherosclerosis // Front. Cardiovasc. Med. 2018. Vol. 5. P. 130. DOI:https://www.doi.org/10.3389/fcvm.2018.00130

Ginsberg H.N., Packard C.J., et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society //Eur. Heart J. 2021;42(47):4791–4806.

Toth P.P. Triglycerides and atherosclerosis: bringing the association into sharper focus // J. Am. Coll. Cardiol. 2021. Vol. 77, N 24. P. 3042–3045.

Norata G.D., Tsimikas S., et al. Apolipoprotein C-III: from pathophysiology to pharmacology // Trends Pharmacol. Sci. 2015;36(10):675-687. DOI: https://www.doi.org/10.1016/j.tips.2015.07.001

Tabas I, Williams KJ, Boren J. 2007 Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

Kannel WB, Vasan RS. 2009 Triglycerides as vascular risk factors: new epidemiologic insights. Curr Opin Cardiol. 24:345–350

National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panelon Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report // Circulation. 2002. Vol. 106, N 25. P. 3143–3421

Кухарчук В.В., Ежов М.В., Сергиенко И.В. и др. Клинические рекомендации Евразийской ассоциации кардиологов (ЕАК) / Национального общества по изучению атеросклероза (НОА) по диагностике и коррекции нарушений липидного обмена с целью профилактики и лечения атеросклероза (2020) // Евразийский кардиологический журнал. 2020. № 2. С. 6–29.

Nordestgaard B.G., Langsted A., Mora S. et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine // Eur. Heart J. 2016. Vol. 37, N 25. P. 1944–1958. DOI:https://www.doi. org/ 10.1093/eurheartj/ehw152

Abourbih S, Filion KB, Joseph L, et al. 2009 Effects of fibrates on lipid profiles and cardiovascular outcomes: a systematic review. Am J Med 122:962.e1–962.e8

Kim K.S., Hong S., Han K. et al. Fenofibrate add-on to statin treatment is associated with low all-cause death and cardiovascular disease in the general population with high triglyceride levels // Metabolism. 2022. Vol. 137. P. 155327.

Kayıkçıoğlu M., Shahbazova S., et al. Cumulative non-HDL cholesterolburden in patients with hypertriglyceridemia receiving long-term fibrate therapy: Real life data from a lipid clinic cohort // Turk. Kardiyol. Dern. Ars. 2020; 48(4):3367.

https://www.doi.org/10.5543/tkda.2019.25169ttps://www.doi.org/10.1016/j.metabol.2022.155327

Downloads

Published

2024-09-15

How to Cite

MORCHILADZE, M., ZHORZHOLIANI, G., SILAGADZE, T., KUPARADZE, M., GARUCHAVA, N., AVALIANI, I., & BERISHVILI, Z. (2024). NENEWLY ASSESSED TRIGLYCERIDE LEVELS AND RESIDUAL RISK OF ATHEROSCLEROSIS. Experimental and Clinical Medicine Georgia, (5), 73–82. https://doi.org/10.52340/jecm.2024.05.12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...