Exploring the Role of Neuroinflammation and Gut-Brain Axis Dysregulation in the Pathogenesis of Non-Motor Symptoms in Myasthenia Gravis
PDF (English)

საკვანძო სიტყვები

Myasthenia gravis
autoimmune disorder
gut microbiota
regulatory T cells
faecal microbiota transplantation
Metabolomics

როგორ უნდა ციტირება

Mozafari, P., Ibadullah, F. N., Ilhum, S., Saleem, R. M., Mtchedlishvili, L., & Dike, C. E. (2026). Exploring the Role of Neuroinflammation and Gut-Brain Axis Dysregulation in the Pathogenesis of Non-Motor Symptoms in Myasthenia Gravis. ახალგაზრდა მკვლევარები, 4(1), 87–97. https://doi.org/10.52340/jr.2026.04.01.07

ანოტაცია

Myasthenia gravis (MG) is a long-lasting autoimmune neuromuscular disorder usually reflected by the presence of autoantibodies against acetylcholine receptors at the neuromuscular junction and characterized by either ocular or generalized disease with possible respiratory crisis. The situation has not changed, as diagnostic difficulties and recurrences are still the main problems despite the improvements in diagnostics and immunosuppression. Moreover, the totality of the evidence is pointing to the fact that MG is a disease that also has non-motor manifestations of important clinical significance. The aim of this narrative review was to summarize the literature on MG which takes the position of a multisystem neuroimmune disease and to clarify the mechanisms of immune dysregulation, neuroinflammation, and gut-immune-brain axis that are the cause of the non-motor symptoms such as fatigue, cognitive impairment, mood disturbances, sleep changes, and autonomic dysfunction. A thorough search in PubMed and Google Scholar using terms connected to MG, non-motor symptoms, gut microbiota, gut-brain axis, neuroinflammation, and immune dysregulation led to the discovery of full-text English studies highlighting both systemic and central mechanisms; a qualitative synthesis of themes was drawn up and focused on microbiome composition, metabolites, cytokines, and the changes in immune cells. Studies were consistent in correlating MG with diminished variety of gut microbes, loss of Firmicutes (including Clostridia/Lachnospiraceae and Faecalibacterium) producing butyrate, and increase in munificent taxa (e.g., Streptococcus and Enterococcus), which was in line with Treg cell (Treg) function being diminished and Th17/Treg balance being shifted. The research involving multi-omics techniques pointed toward the conclusion that dysbiosis was a major reason for the widespread disturbance of SCFAs, and also that it disrupted the pathways of KP and BA through the action of receptors such as AhR and TGR5, which was reflected in the metabolomic profile changes of feces (e.g., of cytosine, xanthine, adenine, and methylmalonic).

https://doi.org/10.52340/jr.2026.04.01.07
PDF (English)

წყაროები

Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, et al. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord. 2021;14:17562864211035657. doi:10.1177/17562864211035657

Thye AY, Law JW, Tan LT, Thurairajasingam S, Chan KG, Letchumanan V, Lee LH. Exploring the gut microbiome in myasthenia gravis. Nutrients. 2022;14(8):1647. doi:10.3390/nu14081647

Wu T, Jiang H, Lin C, Peng J, Kong X, Yu J, et al. Gut microbial profiles of patients with optic neuritis or myasthenia gravis. J Int Med Res. 2025;53(2):3000605251314817. doi:10.1177/03000605251314817

Su T, Yin X, Ren J, Lang Y, Zhang W, Cui L. Causal relationship between gut microbiota and myasthenia gravis: a bidirectional Mendelian randomization study. Cell Biosci. 2023;13(1):204. doi:10.1186/s13578-023-01163-8

Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: do all roads lead to Rome? Autoimmun Rev. 2023;22(5):103313. doi:10.1016/j.autrev.2023.103313

Chen P, Tang X. Gut microbiota as regulators of Th17/Treg balance in patients with myasthenia gravis. Front Immunol. 2021;12:803101. doi:10.3389/fimmu.2021.803101

Schirò G, Iacono S, Balistreri CR. The role of human microbiota in myasthenia gravis: a narrative review. Neurol Int. 2023;15(1):392–404. doi:10.3390/neurolint15010026

Qiu D, Xia Z, Jiao X, Deng J, Zhang L, Li J. Altered gut microbiota in myasthenia gravis. Front Microbiol. 2018;9:2627. doi:10.3389/fmicb.2018.02627

Zhang H, Li Y, Zheng P, et al. Altered metabolism of the microbiota–gut–brain axis is linked with comorbid anxiety in fecal recipient mice of myasthenia gravis. Front Microbiol. 2022;13:804537. doi:10.3389/fmicb.2022.804537

Wang B, Liu D, Yang Y, Zhu R. Beyond the surface: investigating the potential mechanisms of non-motor symptoms in myasthenia gravis. Eur J Neurol. 2025. doi:10.1111/ene.70309

Zheng P, Li Y, Wu J, et al. Perturbed microbial ecology in myasthenia gravis: evidence from the microbiome and fecal metabolome. Adv Sci (Weinh). 2019;6(21):1901441. doi:10.1002/advs.201901441

Ding XJ, Li HY, Wang H, et al. Altered gut microbiota and metabolites in untreated myasthenia gravis patients. Front Neurol. 2023;14:1248336. doi:10.3389/fneur.2023.1248336

Sheng D, Wang S, Li P, et al. Evidence for genetic causal relationships between gut microbiome, metabolites, and myasthenia gravis: a bidirectional Mendelian randomization study. Front Immunol. 2023;14:1279845. doi:10.3389/fimmu.2023.1279845

He L, Zhong Z, Wen S, et al. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal. 2024;22:188. doi:10.1186/s12964-024-01588-9

Kang Y, Li L, Kang X, Zhao Y, Cai Y. Gut microbiota and metabolites in myasthenia gravis: early diagnostic biomarkers and therapeutic strategies. Clin Immunol. 2022;245:109173. doi:10.1016/j.clim.2022.109173

Huda R. Inflammation and autoimmune myasthenia gravis. Front Immunol. 2023;14:1110499. doi:10.3389/fimmu.2023.1110499

Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, et al. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord. 2021;14:17562864211035657. doi:10.1177/17562864211035657

Thye AYK, Law JWF, Tan LT-H, Thurairajasingam S, Chan KG, Letchumanan V, Lee LH. Exploring the gut microbiome in myasthenia gravis. Nutrients. 2022;14(8):1647. doi:10.3390/nu14081647

Zheng P, Li Y, Wu J, Wei Y, Yan X, Zhang Z, et al. Perturbed microbial ecology in myasthenia gravis: evidence from the microbiome and fecal metabolome. Adv Sci (Weinh). 2019;6(21):1901441. doi:10.1002/advs.201901441

Ding XJ, Li HY, Wang H, Huang HL, Zhang Y, Yin L, et al. Altered gut microbiota and metabolites in untreated myasthenia gravis patients. Front Neurol. 2023;14:1248336. doi:10.3389/fneur.2023.1248336

Sheng D, Wang S, Li P, Han R, Zhong Y, Wang X, et al. Evidence for genetic causal relationships between gut microbiome, metabolites, and myasthenia gravis: a bidirectional Mendelian randomization study. Front Immunol. 2023;14:1279845. doi:10.3389/fimmu.2023.1279845

He L, Zhong Z, Wen S, Xie Z, Fan Z, Zhao Z, et al. Gut microbiota-derived butyrate restores impaired regulatory T cells in patients with AChR myasthenia gravis via mTOR-mediated autophagy. Cell Commun Signal. 2024;22:188. doi:10.1186/s12964-024-01588-9

Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: do all roads lead to Rome? Autoimmun Rev. 2023;22(5):103313. doi:10.1016/j.autrev.2023.103313

Wang B, Liu D, Yang Y, Zhu R. Beyond the surface: investigating the potential mechanisms of non-motor symptoms in myasthenia gravis. Eur J Neurol. 2025. doi:10.1111/ene.70309

Downloads

Download data is not yet available.