ანოტაცია
წარმოიდგინეთ, რომ ჩვენი სხეული დიდ წიგნს ჰგავს, მრავალი განსხვავებული თავით. თითოეული თავი მოგვითხრობს განსხვავებულ ამბავს ჩვენი სხეულის სხვადასხვა ქსოვილზე. მაგრამ წიგნის დასაწყისშივე არის სპეციალური თავი სახელწოდებით "პლურიპოტენცია". პლურიპოტენცია ზეძალას ჰგავს, რადგან ეს ნიშნავს, რომ ამ თავში უჯრედები შეიძლება გახდეს ჩვენი სხეულის თითქმის ნებისმიერი სხვა ტიპის უჯრედი, როგორიცაა კანის უჯრედები, გულის უჯრედები ან ტვინის უჯრედები. მკვლევარები სწავლობდნენ ამ პლურიპოტენციის თავის კონკრეტულ ნაწილს სახელწოდებით „გულუბრყვილო უჯრედები“. ეს პლურიპოტენციის სპეციალურ ვერსიას ჰგავს, რომელიც მათთვის ძალიან საინტერესოა. მათ აინტერესებთ როგორ მუშაობს და რისი გაკეთება შეუძლია ამ გულუბრყვილო მდგომარეობას. მაგრამ აქ საქმე ცოტა რთულდება. თაგვებში მეცნიერებმა ბევრი რამ გაარკვიეს ამ გულუბრყვილო მდგომარეობის შესახებ. თუმცა, როდესაც ისინი იკვლევენ ადამიანებს, ისინი ამჩნევენ, რომ ჩვენი უჯრედების გულუბრყვილო მდგომარეობა არ არის ზუსტად იგივე, რაც თაგვების ვერსიაში. ეს ჰგავს თავსატეხის ორი მსგავსი, მაგრამ განსხვავებული ნაწილის შედარებას. მეცნიერები ბევრს მუშაობენ გულუბრყვილო მდგომარეობის ამ განსაკუთრებული ადამიანური ვერსიის უკეთ გასაგებად. მათ სურთ გაარკვიონ, რა ინარჩუნებს ადამიანის უჯრედებს ამ მდგომარეობაში და როგორ შეუძლიათ გამოიყენონ ეს ცოდნა ადამიანების დასახმარებლად. მათ სჯერათ, რომ ამის გაგებით, მათ შეუძლიათ გააკეთონ საოცარი რამ, მაგალითად, დაეხმარონ სხეულს უკეთესად გამოჯანმრთელდეს ან ახალი ქსოვილების და ორგანოები გაზრდას, როდესაც ისინი დაზიანებულია.
წყაროები
Brons IG, Smithers LE, Trotter MW et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 2007; 448: 191–195.
Carter MG, Smagghe BJ, Stewart AK et al. A primitive growth factor, NME7AB, is sufficient to induce stable naïve state human pluripotency; reprogramming in this novel growth factor confers superior differentiation. Stem Cells 2016; 34: 847–859.
Chen Y, Blair K, Smith A. Robust self-renewal of rat embryonic stem cells requires fine-tuning of glycogen synthase kinase-3 inhibition. Stem Cell Rep 2013; 1: 209–217.
Chichinadze, K., Lazarashvili, A., & Tkemaladze, J. (2013). RNA in centrosomes: structure and possible functions. Protoplasma, 250(1), 397-405.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). A new class of RNAs and the centrosomal hypothesis of cell aging. Advances in Gerontology, 2(4), 287-291.
Chichinadze, K., Tkemaladze, J., & Lazarashvili, A. (2012). Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides, Nucleotides and Nucleic Acids, 31(3), 172-183.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K., Tkemaladze, D., & Lazarashvili, A. (2012). New class of RNA and centrosomal hypothesis of cell aging. Advances in Gerontology= Uspekhi Gerontologii, 25(1), 23-28.
Chichinadze, K. N., & Tkemaladze, D. V. (2008). Centrosomal hypothesis of cellular aging and differentiation. Advances in Gerontology= Uspekhi Gerontologii, 21(3), 367-371.
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–156
Hanna J, Cheng AW, Saha K et al. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc Nat Acad Sci USA 2010; 107: 9222–9227.
Huang Y, Osorno R, Tsakiridis A et al. In vivo differentiation potential of epiblast stem cells revealed by chimeric embryo formation. Cell Rep 2012; 2: 1571–1578.
Hutchins AP, Pei D. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs. Sci Bull (Beijing) 2015; 60: 1722–1733.
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31.
Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. https://doi.org/10.52340/2023.01.01.20
Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184–193. https://doi.org/10.52340/2023.01.01.19
Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253–262.
Kovisto H, Hyvärinen M, Strömberg et al. Cultures of human embryonic stem cells: Serum replacement medium or serum-containing media and the effect of basic fibroblast growth factor. Reprod Biomed Online 20014; 9: 330–337.
Kunath T, Saba-El-Leil MK, Almousaileakh M et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 2007; 134: 2895–2902.
Lengner CJ, Gimelbrant AA, Erwin JA et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell 2010; 141: 872–883.
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91.
Matsaberidze, M., Prangishvili, A., Gasitashvili, Z., Chichinadze, K., & Tkemaladze, J. (2017). TO TOPOLOGY OF ANTI-TERRORIST AND ANTI-CRIMINAL TECHNOLOGY FOR EDUCATIONAL PROGRAMS. International Journal of Terrorism & Political Hot Spots, 12.
Martello G, Sugimoto T, Diamanti E et al. Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 2012; 11: 491–504.
Meek S, Wei J, Sutherland L et al. Tuning of β-catenin activity is required to stabilize self-renewal of rat embryonic stem cells. Stem Cells 2013; 331: 2104–2115.
Nagy A, Rossant J, Nagy R et al. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 1993; 90: 8424–8428.
Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell 2009; 4: 487–492.
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). SYSTEM COMPONENTS OF HEALTH AND INNOVATION FOR THE ORGANIZATION OF NANO-BIOMEDIC ECOSYSTEM TECHNOLOGICAL PLATFORM. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305.
Raz R, Lee CK, Cannizzaro LA et al. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A 1999; 96: 2846–2851.
Shahbazi MN, Jedrusik A, Vuoristo S et al. Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 2016; 18: 700–708.
Shakiba N, White CA, Lipsitz YY et al. CD24 tracks divergent pluripotent states in mouse and human cells. Nat Commun 2015; 6: 7329.
Sperber H, Mathieu J, Wang Y et al. The metabolome regulates the epigenetic landscape during naïve-to-primed human embryonic stem cell transition. Nat Cell Biol 2015; 17: 1523–1535.
Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.
Tkemaladze, Jaba and Kipshidze, Mariam, Regeneration Potential of the Schmidtea Mediterranea CIW4 Planarian. Available at SSRN: https://ssrn.com/abstract=4633202 or http://dx.doi.org/10.2139/ssrn.4633202
Tkemaladze, J. (2023). Is the selective accumulation of oldest centrioles in stem cells the main cause of organism ageing?. Georgian Scientists, 5(3), 216–235. https://doi.org/10.52340/2023.05.03.22
Tkemaladze, J. (2023). Cross-senolytic effects of dasatinib and quercetin in humans. Georgian Scientists, 5(3), 138–152. https://doi.org/10.52340/2023.05.03.15
Tkemaladze, J. (2023). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 156–170. https://doi.org/10.52340/2023.01.01.17
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1), 123–141. https://doi.org/10.52340/2023.01.01.15
Tkemaladze, J. (2023). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.
Tkemaladze, J. Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3.
Tkemaladze, J., Tavartkiladze, A., & Chichinadze, K. (2012). Programming and Implementation of Age-Related Changes. In Senescence. IntechOpen.
Tkemaladze, J., & Chichinadze, K. (2010). Centriole, differentiation, and senescence. Rejuvenation research, 13(2-3), 339-342.
Tkemaladze, J. V., & Chichinadze, K. N. (2005). Centriolar mechanisms of differentiation and replicative aging of higher animal cells. Biochemistry (Moscow), 70, 1288-1303.
Tkemaladze, J., & Chichinadze, K. (2005). Potential role of centrioles in determining the morphogenetic status of animal somatic cells. Cell biology international, 29(5), 370-374.
Theunissen T, Friedli M, He Y et al. Molecular Criteria for defining the naïve human pluripotent state. Cell Stem Cell 2016; 19: 1–14.
Valamehr B, Robinson M, Abujarour R et al. Platform for induction and maintenance of transgene-free hiPSCs resembling ground state pluripotent stem cells. Stem Cell Rep 2014; 2: 366–381.
Ware CB, Wang LL, Mecham BH et al. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell 2009; 4: 359–369.
Ware CB, Nelson AM, Mecham B et al. Derivation of naïve human embryonic stem cells. Proc Nat Acad Sci USA 2014; 111: 4484–4489.
Zhou W, Choi M, Margineantu D et al. HIF1a induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 2012; 31: 1203–2116.=
Ying QL, Wray J, Nichols J et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453: 519–523.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чичинадзе, К. Н., Ткемаладзе, Д. В., & Азмайпарашвили, З. А. (2017). К топологии антитеррористических и антикриминальных технологии для образовательных программ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 284.
Прангишвили, А. И., Гаситашвили, З. А., Мацаберидзе, М. И., Чхартишвили, Л. С., Чичинадзе, К. Н., Ткемаладзе, Д. В., ... & Азмайпарашвили, З. А. СИСТЕМНЫЕ СОСТАВЛЯЮЩИЕ ЗДРАВООХРАНЕНИЯ И ИННОВАЦИЙ ДЛЯ ОРГАНИЗАЦИИ ЕВРОПЕЙСКОЙ НАНО-БИОМЕДИЦИНСКОЙ ЕКОСИСТЕМНОЙ ТЕХНОЛОГИЧЕСКОЙ ПЛАТФОРМЫ. В научном издании представлены материалы Десятой международной научно-технической конфе-ренции «Управление развитием крупномасштабных систем (MLSD’2016)» по следующим направле-ниям:• Проблемы управления развитием крупномасштабных систем, включая ТНК, Госхолдин-ги и Гос-корпорации., 365.
Ткемаладзе, Д. В., & Чичинадзе, К. Н. (2005). Центриолярные механизмы дифференцировки и репликативного старения клеток высших животных. Биохимия, 70(11), 1566-1584.
Ткемаладзе, Д., Цомаиа, Г., & Жоржолиани, И. (2001). Создание искусственных самоадаптирующихся систем на основе Теории Прогноза. Искусственный интеллект. УДК 004.89. Искусственный интеллект. УДК 004.89.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.
Чичинадзе, К., Ткемаладзе, Д., & Лазарашвили, А. (2012). НОВЫЙ КЛАСС РНК И ЦЕНТРОСОМНАЯ ГИПОТЕЗА СТАРЕНИЯ КЛЕТОК. Успехи геронтологии, 25(1), 23-28.
Чичинадзе, К. Н., & Ткемаладзе, Д. В. (2008). Центросомная гипотеза клеточного старения и дифференциации. Успехи геронтологии, 21(3), 367-371.