The planaria Schmidtea mediterranea as a model system for the study of stem cell biology
PDF

Keywords

regeneration
planarian
neoblasts
stem cells
progenitors
piwi
differentiation
Schmidtea mediterranea

How to Cite

Kipshidze, M., & Tkemaladze, J. (2023). The planaria Schmidtea mediterranea as a model system for the study of stem cell biology. Junior Researchers, 1(1), 194–218. https://doi.org/10.52340/2023.01.01.20

Abstract

Planarians, a type of flatworm, possess the remarkable ability of complete bodily regeneration, enabling them to redevelop any absent anatomical component following injury or surgical removal. The remarkable regenerative potential exhibited by planarians is underpinned by the existence of a substantial population of somatic pluripotent stem cells in the adult organism. Termed neoblasts, these cells provide a distinctive model system for investigating the in vivo process of differentiation. Over the past few years, the utilization of FACS-based neoblast isolation, RNAi-based functional analyses, and high-throughput techniques like single-cell sequencing have facilitated substantial advancements in our comprehension of various facets of neoblast biology. Consequently, planarians represent an exceptional animal model for investigating the intricacies of stem cell biology and biochemistry.

https://doi.org/10.52340/2023.01.01.20
PDF

References

Almuedo-Castillo, M.; Crespo, X.; Seebeck, F.; Bartscherer, K.; Salò, E.; Adell, T. (2014). JNK Controls the Onset of Mitosis in Planarian Stem Cells and Triggers Apoptotic Cell Death Required for Regeneration and Remodeling. PLoS Genet. 2014, 10, e1004400.

Alvarado A. Sánchez, Newmark PA, Robb SM, Juste R. (2002). The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development. 2002;129:5659–5665.

Avgustinova, A.; Benitah, S.A. (2016). Epigenetic Control of Adult Stem Cell Function. Nat. Rev. Mol. Cell Biol. 2016, 17, 643–658.

Baguñá J, Saló E, Auladell C. (1989). Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development. 1989;107:77–86.

Bannister, A.J.; Falcão, A.M.; Castelo-Branco, G. (2017). Histone Modifications and Histone Variants in Pluripotency and Differentiation. In Chromatin Regulation and Dynamics; Academic Press: Cambridge, MA, USA, 2017.

Barberán, S.; Fraguas, S.; Cebrià, F. (2016). The EGFR Signaling Pathway Controls Gut Progenitor Differentiation during Planarian Regeneration and Homeostasis. Developement 2016, 143, 2089–2102.

Bernstein, B.E.; Mikkelsen, T.S.; Xie, X.; Kamal, M.; Huebert, D.J.; Cuff, J.; Fry, B.; Meissner, A.; Wernig, M.; Plath, K.; et al. (2006). A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell 2006, 125, 315–326.

Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999;283:534–537.

Cheng, L.C.; Tu, K.C.; Seidel, C.W.; Robb, S.M.C.; Guo, F.; Sánchez Alvarado, A. (2018). Cellular, Ultrastructural and Molecular Analyses of Epidermal Cell Development in the Planarian Schmidtea Mediterranea. Dev. Biol. 2018, 433, 357–373.

Dattani, A.; Kao, D.; Mihaylova, Y.; Abnave, P.; Hughes, S.; Lai, A.; Sahu, S.; Aboobaker, A.A. (2018). Epigenetic Analyses of Planarian Stem Cells Demonstrate Conservation of Bivalent Histone Modifications in Animal Stem Cells. Genome Res. 2018, 28, 1543–1554.

Fraguas, S.; Cárcel, S.; Vivancos, C.; Molina, M.D.; Ginés, J.; Mazariegos, J.; Sekaran, T.; Bartscherer, K.; Romero, R.; Cebrià, F. (2021). CREB-Binding Protein (CBP) Gene Family Regulates Planarian Survival and Stem Cell Differentiation. Dev. Biol. 2021, 476, 53–67.

Hayashi T, Asami M, Higuchi S, Shibata N, Agata K. (2006). Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Dev Growth Differ. 2006;48:371–380.

Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. doi: https://doi.org/10.9734/bpi/idmmr/v2/15155D

Kahn, M. (2018). Wnt Signaling in Stem Cells and Cancer Stem Cells: A Tale of Two Coactivators. In Progress in Molecular Biology and Translational Science; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 153, pp. 209–244.

Kato, Y.; Shi, Y.; He, X. (1999). Neuralization of the Xenopus Embryo by Inhibition of P300/ CREB-Binding Protein Function. J. Neurosci. 1999, 19, 9364–9373.

Kipshidze, M. (2023). Age-Related Changes in Proportions of Urolithins A, B, and 0. Junior Researchers, 1(1), 17-29.

Kipshidze, M., Mazanashvili, V., Gorgaslidze, N., & Gabunia, L. (2023). Cross-sensitizing effects of Resveratrol and Astaxanthin. Junior Researchers, 1(1), 142-155.

Kipshidze, M., & Tkemaladze, J. (2023). Comparative Analysis of drugs that improve the Quality of Life and Life Expectancy. Junior Researchers, 1(1), 184-193.

Mihaylova, Y.; Abnave, P.; Kao, D.; Hughes, S.; Lai, A.; Jaber-Hijazi, F.; Kosaka, N.; Aboobaker, A.A. (2018). Conservation of Epigenetic Regulation by the MLL3/4 Tumour Suppressor in Planarian Pluripotent Stem Cells. Nat. Commun. 2018, 9, 1–17.

Molina MD, Cebrià F. (2021). Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules. 2021 Oct 17;11(10):1532. doi: 10.3390/biom11101532. PMID: 34680165; PMCID: PMC8533874.

Molinaro, A.M.; Pearson, B.J. In Silico Lineage Tracing through Single (2016). Cell Transcriptomics Identifies a Neural Stem Cell Population in Planarians. Genome Biol. 2016, 17, 1–17.

Molinaro, A.M.; Lindsay-Mosher, N.; Pearson, B.J. (2021). Identification of TOR-responsive Slow-cycling Neoblasts in Planarians. EMBO Rep. 2021, 22, e50292.

Newmark PA. (2005). Opening a new can of worms: a large-scale RNAi screen in planarians. Dev Cell. 2005;8:623–624.

Newmark PA, Reddien PW, Cebria F, Alvarado A. Sánchez. (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11861–11865.

Oviedo NJ, Newmark PA, Alvarado A. Sánchez. (2003). Allometric scaling and proportion regulation in the freshwater planarian Schmidtea mediterranea. Dev Dyn. 2003;226:326–333. 8.

Peiris, T.H.; Ramirez, D.; Barghouth, P.G.; Oviedo, N.J. (2016). The Akt Signaling Pathway Is Required for Tissue Maintenance and Regeneration in Planarians. BMC Dev. Biol. 2016, 16, 7.

Raz, A.A.; Wurtzel, O.; Reddien, P.W. (2021). Planarian Stem Cells Specify Fate yet Retain Potency during the Cell Cycle. Cell Stem Cell 2021, 28, 1307–1322.e5.

Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, Alvarado A. Sánchez. (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science. 2005;310:1327–1330.

Reddien, P.W. (2021). Principles of Regeneration Revealed by the Planarian Eye. Curr. Opin. Cell Biol. 2021, 73, 19–25.

Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Alvarado A. Sánchez. (2005). Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell. 2005;8:635–649.

Ro S, Rannala B. (2001). Methylation patterns and mathematical models reveal dynamics of stem cell turnover in the human colon. Proc Natl Acad Sci U S A. 2001;98:10519–10521.

Salvetti, A.; Rossi, L. (2019). Planarian Stem Cell Heterogeneity. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1123.

Stelman, C.R.; Smith, B.M.; Chandra, B.; Roberts-Galbraith, R.H. (2021). CBP/P300 Homologs CBP2 and CBP3 Play Distinct Roles in Planarian Stem Cell Function. Dev. Biol. 2021, 473, 130–143.

Sugio, M., Yoshida-Noro, C., Ozawa, K., & Tochinai, S. (2012). Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Development, growth & differentiation, 54(4), 439–450. https://doi.org/10.1111/j.1440-169X.2012.01328.x

De Sousa, N.; Rodríguez-Esteban, G.; Rojo-Laguna, J.I.; Saló, E.; Adell, T. (2018). Hippo Signaling Controls Cell Cycle and Restricts Cell Plasticity in Planarians. PLoS Biol. 2018, 16, e2002399.

Teo, J.-L.; Ma, H.; Nguyen, C.; Lam, C.; Kahn, M. (2005). Specific Inhibition of CBP-Catenin Interaction Rescues Defects in Neuronal Differentiation Caused by a Presenilin-1 Mutation. Proc. Natl. Acad. Sci. USA 2005, 102, 12171–12176.

Timmons L, Fire A. (1998). Specific interference by ingested dsRNA. Nature. 1998;395:854.

Thiruvalluvan, M.; Barghouth, P.G.; Tsur, A.; Broday, L.; Oviedo, N.J. (2018). SUMOylation Controls Stem Cell Proliferation and Regional Cell Death through Hedgehog Signaling in Planarians. Cell. Mol. Life Sci. 2018, 75, 1285–1301.399.

Thomas, P.D.; Kahn, M. (2016). Kat3 Coactivators in Somatic Stem Cells and Cancer Stem Cells: Biological Roles, Evolution, and Pharmacologic Manipulation. Cell Biol. Toxicol. 2016, 32, 61–81.

Tkemaladze, J. (2022) Long-Term Differences between Regenerations of Head and Tail Fragments in Schmidtea Mediterranea Ciw4. Available at SSRN 4257823.

Tkemaladze, J. (2023a). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761.doi: 10.1007/s11033-022-08203-5. Epub 2022 Dec 30. PMID: 36583780

Tkemaladze, J. (2023b). Structure and possible functions of centriolar RNA with reference to the centriolar hypothesis of differentiation and replicative senescence. JUNIOR RESEARCHERS, 1(1), 156-170. https://doi.org/10.52340/2023.01.01.17

Tkemaladze, J. (2023c). Cross-senolytic effects of dasatinib and quercetin in humans. GEORGIAN SCIENTISTS, 5(3), 138-152. https://doi.org/10.52340/2023.05.03.15

Trost, T.; Haines, J.; Dillon, A.; Mersman, B.; Robbins, M.; Thomas, P.; Hubert, A. (2018). Characterizing the Role of SWI/SNF-Related Chromatin Remodeling Complexes in Planarian Regeneration and Stem Cell Function. Stem Cell Res. 2018, 32, 91–103.

Tu, K.C.; Cheng, L.-C.; Tk Vu, H.; Lange, J.J.; Mckinney, S.A.; Seidel, C.W.; Sá Nchez Alvarado, A. Egr-5 (2015). Is a Post-Mitotic Regulator of Planarian Epidermal Differentiation. eLife 2015, 4, e10501.

Voss, A.K.; Thomas, T. (2018). Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. BioEssays 2018, 40., 40.

Wagner, D.E.; Wang, I.E.; Reddien, P.W. (2011). Clonogenic Neoblasts Are Pluripotent Adult Stem Cells That Underlie Planarian Regeneration. Science 2011, 332.

Wang, Y.C.; Peterson, S.E.; Loring, J.F. (2014). Protein Post-Translational Modifications and Regulation of Pluripotency in Human Stem Cells. Cell Res. 2014, 24, 143–160.

Wurtzel, O.; Cote, L.E.; Poirier, A.; Satija, R.; Regev, A.; Reddien, P.W. A (2015). Generic and Cell-Type-Specific Wound Response Precedes Regeneration in Planarians. Dev. Cell 2015, 35, 632–645.

van Wolfswinkel, J.C.; Wagner, D.E.; Reddien, P.W. (2014). Single-Cell Analysis Reveals Functionally Distinct Classes within the Planarian Stem Cell Compartment. Cell Stem Cell 2014, 15, 326–339.

Zeng, A.; Li, Y.Q.; Wang, C.; Han, X.S.; Li, G.; Wang, J.Y.; Li, D.S.; Qin, Y.W.; Shi, Y.; Brewer, G.; et al. (2013). Heterochromatin Protein 1 Promotes Self-Renewal and Triggers Regenerative Proliferation in Adult Stem Cells. J. Cell Biol. 2013, 201, 409–425.

Zhu, S.J.; Pearson, B.J. (2018). Smed-Myb-1 Specifies Early Temporal Identity during Planarian Epidermal Differentiation. Cell Rep. 2018, 25, 38–46.e3.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...