ანოტაცია
მედიცინა გვასწავლის, რომ მედიკამენტებს გააჩნიათ დროებითი ეფექტი, ხოლო კვებას, ძილსა და სუნთქვას გააჩნია მუდმივი ზეგავლენა ადამიანის ჯანმრთელობაზე. საკვები პროდუქტები, გარდა მიკროელემენტების, ვიტამინებისა და კალორიებისა, შეიცავენ ისეთ ნივთიერებებს, რომლებიც ააქტიურებენ გენებს. განსაკუთრებით საინტერესოა ის ნივთიერებები, რომლებიც დღემდე დაუმარცხებელ დაავადებაზე - სიბერეზე - მოქმედებენ. რესვერატროლი (3,5,4’-ტრიჰიდროქსისტილბენი) არის ბუნებრივი პოლიფენოლის ნაერთი. მას გააჩნია უნარი გააქტიუროს SIRT1 და P300 გენები. ასტაქსანტინი კი არის ბუნებრივი პიგმენტი, რომელიც მიეკუთვნება კაროტინოიდების ოჯახს. ის ასევე SIRT1 გენის ჩართვაში მონაწილეობს. მოსალოდნელია, რომ ამ ორი სენოლიტიური ეფექტის მქონე ნივთიერების ერთდროულმა მიღებამ გამოიწვიოს ჯვარედინი ეფექტი - ერთობლივი ზემოქმედება იყოს უფრო მეტი, ვიდრე მათი ზემოქმედებების მექანიკური ჯამი.
წყაროები
Yamamoto, A., Sly, P. D., Begum, N., Yeo, A. J., & Fantino, E. (2022). Resveratrol and Astaxanthin Protect Primary Human Nasal Epithelial Cells Cultured at an Air-liquid Interface from an Acute Oxidant Exposure. Journal of cellular signaling, 3(4), 207–217. doi.org/10.33696/signaling.3.084
Lucas, J., Hsieh, T. C., Halicka, H. D., Darzynkiewicz, Z., & Wu, J. M. (2018). Upregulation of PD-L1 expression by resveratrol and piceatannol in breast and colorectal cancer cells occurs via HDAC3/p300-mediated NF-κB signaling. International journal of oncology, 53(4), 1469–1480. doi.org/10.3892/ijo.2018.4512
Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harbor perspectives in biology, 6(4), a018713. https://doi.org/10.1101/cshperspect.a018713
Stephan, L. S., Almeida, E. D., Markoski, M. M., Garavaglia, J., & Marcadenti, A. (2017). Red Wine, Resveratrol and Atrial Fibrillation. Nutrients, 9(11), 1190. doi.org/10.3390/nu9111190
Castaldo, L., Narváez, A., Izzo, L., Graziani, G., Gaspari, A., Minno, G. D., & Ritieni, A. (2019). Red Wine Consumption and Cardiovascular Health. Molecules (Basel, Switzerland), 24(19), 3626. doi.org/10.3390/molecules24193626
Tkemaladze, J., & Apkhazava, D. (2019). Dasatinib and quercetin: short-term simultaneous administration improves physical capacity in human. J Biomedical Sci, 8(3), 3. https://www.researchgate.net/publication/343961213_Dasatinib_and_Quercetin_Short-Term_Simultaneous_Administration_Improves_Physical_Capacity_In_Hum an
Jaba, T. (2022). Dasatinib and quercetin: short-term simultaneous administration yields senolytic effect in humans. Issues and Developments in Medicine and Medical Research Vol. 2, 22-31. https://doi.org/10.9734/bpi/idmmr/v2/15155D
Lezhava, T., Monaselidze, J., Jokhadze, T., Kakauridze, N., Khodeli, N., Rogava, M., ... & Gaiozishvili, M. (2011). Gerontology research in Georgia. Biogerontology, 12, 87-91. https://doi.org/10.1007/s10522-010-9283-6
Tkemaladze, J. (2022). Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells?. Molecular Biology Reports, 50(3), 2751-2761. doi: 10.1007/s11033-022-08203-5. Epub 2022 Dec 30. PMID: 36583780
Tkemaladze, J. (2023). The centriolar hypothesis of differentiation and replicative senescence. Junior Researchers, 1(1). doi: https://doi.org/10.52340/2023.01.01.15
Prangishvili, A., Gasitashvili, Z., Matsaberidze, M., Chkhartishvili, L., Chichinadze, K., Tkemaladze, J., ... & Azmaiparashvili, Z. (2019). System components of health and innovation for the organization of nano-biomedic ecosystem technological platform. Current Politics and Economics of Russia, Eastern and Central Europe, 34(2/3), 299-305. https://www.proquest.com/openview/9c78cb7487c6d1dc09c9ee33d99b47dd/1?pq-origsite=gscholar&cbl=2034883
Langi, P., Kiokias, S., Varzakas, T., & Proestos, C. (2018). Carotenoids: From Plants to Food and Feed Industries. Methods in molecular biology (Clifton, N.J.), 1852, 57–71. https://doi.org/10.1007/978-1-4939-8742-9_3
Nishida, Y., Nawaz, A., Hecht, K., & Tobe, K. (2021). Astaxanthin as a Novel Mitochondrial Regulator: A New Aspect of Carotenoids, beyond Antioxidants. Nutrients, 14(1), 107. https://doi.org/10.3390/nu14010107
Tang B. L. (2016). Sirt1 and the Mitochondria. Molecules and cells, 39(2), 87–95. https://doi.org/10.14348/molcells.2016.2318
Wątroba, M., Dudek, I., Skoda, M., Stangret, A., Rzodkiewicz, P., & Szukiewicz, D. (2017). Sirtuins, epigenetics and longevity. Ageing research reviews, 40, 11–19. https://doi.org/10.1016/j.arr.2017.08.001
Chen CL, Yang HI, Yang WS et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology 2008; 135: 111–21.
Li H, Fostermann U. Resveratrol: a multifunctional compound improving endothelial function. Cardiovasc Drugs Ther 2009; 23: 425–9.
Lin JF, Lin SM, Chih CL et al. Resveratrol reduces infarct size and improves ventricular function after myocardial ischemia in rats. Life Sci 2008; 83: 313–7
Saleh MC, Connell BJ, Saleh TM. Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptors. Neuroscience 2010; 166: 445–54.
Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 2006; 11 (3): 217–25.
Wallerath T, Li H, Gödtel-Ambrust U et al. blend of polyphenolic compounds explains the stimulatory effect of red wine on human endothelial NO synthase. Nitric Oxide 2005; 12 (2): 97–104.
Macarulla MT, Alberdi G, Gomez S et al. Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 2009; 65: 369–76
Kitada M, Koya D. Renal protective effects of resveratrol. Oxid Med Cell Longev 2013; p. 1155–60
Saleh MC, Connell BJ, Saleh TM. Resveratrol preconditioning induces cellular stress proteins and is mediated via NMDA and estrogen receptors. Neuroscience 2010; 166: 445–54
Taguchi K, Hida M, Matsumoto T et al. Effect of Short-term Polyphenol Treatment on Endothelial Dysfunction and Thromboxane A2 Levels in Streptozotocin-Induced Diabetic Mice. Biol Pharm Bull 2014; 37 (6): 1056–61.
Kumar A, Negi G, Sharma SS. Neuroprotection by resveratrol in diabetic neuropathy: concepts & mechanisms. Curr Med Chem 2013; 20 (36): 4640–5
Shang J, Chen LL, Xiao FX et al. Resveratrol improves non-alcoholic fatty liver disease by activating AMPactivated protein kinase. Acta Pharmacol Sin 2008; 29: 698–706.
Kasdallah-Grissa A, Mornagui B, Aouani E et al. Resveratrol, a red wine polyphenol, attenuates ethanolinduced oxidative stress in rat liver. Life Sci 2007; 80: 1033–9.
Chen CL, Yang HI, Yang WS et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology 2008; 135: 111–21
Bishayee A, Barnes KF, Bhatia D et al. Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis. Cancer Prev Res 2010; 3: 753–63.
Mbimba T, Awale P, Bhatia D et al. Alteration of hepatic proinflammatory cytokines is involved in the resveratrol-mediated chemoprevention of chemically-induced hepatocarcinogenesis. Curr Pharm Biotechnol 2012; 13: 229–34
Atmaca N, Atmaca HT, Kanici A, Anteplioglu T. Protective effect of resveratrol on sodium fluoride-induced oxidative stress, hepatotoxicity and neurotoxicity in rats. Food Chem Toxicol 2014; p. 245–78.
Khan MM, Ahmad A, Ishrat T et al. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 2010; 1328: 139–51.
Lu KT, Ko MC, Chen BY et al. Neuroprotective Effects of Resveratrol on MPTP-Induced Neuron Loss Mediated by Free Radical Scavenging. J Agric Food Chem 2008; 56: 6910–3.
Singleton RH, Yan HQ, Fellows-Mayle W, Dixon CE. Resveratrol attenuates behavioral impairments and reduces cortical and hippocampal loss in a rat controlled cortical impact model of traumatic brain injury. J Neurotrauma 2010; 27: 1091–9.
Oomen CA, Farkas E, Roman V et al. Resveratrol preserves cerebrovascular density and cognitive function in aging mice. Front Aging Neurosci 2009; 1: 4–5
Ranney A, Petro MS. Resveratrol protects spatial learning in middleaged C57BL/6 mice from effects of ethanol. Behav Pharmacol 2009; 20: 330–6. 48. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2008; 22: 659–61.
Lin CJ, Chen TH, Yang LY, Shih CM. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis 2014; 5: 1147
Li SY, Wang XB, Kong LY. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer's disease. Eur J Med Chem 2014; 71: 36–45
Kim J, Cha Y-N, Surh Y-J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutation Research 2010; 690 (1–2): 12–23.
Asensi M, Medina I, Ortega A et al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 2002; 33: 387–98.
Banerjee S, Bueso-Ramos C, Aggarwal BB. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappa B, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 2002; 62: 4945–54
Bhat KPL, Lantvit D, Christov K et al. Estrogenic and antiestrogenic properties of resveratrol in mammary tumor models. Cancer Res 2001; 61 (20): 7456–63
Harper CE, Cook LM, Patel BB et al. Genistein and resveratrol, alone and in combination, suppress prostate cancer in SV-40 tag rats. Prostate 2009; 69: 1668–82
Narayanan NK, Nargi D, Randolph C, Narayanan BA. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 2009; 125: 1–8
Seeni A, Takahashi S, Takeshita K et al. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac J Cancer Prev 2008; 9: 7–14.
Yu L, Sun ZJ, Wu SL, Pan CE. Effect of resveratrol on cell cycle proteins in murine transplantable liver cancer. World J Gastroenterol 2003; 9: 2341–3.
Lin HC, Chen YF, Hsu WH et al. Resveratrol helps recovery from fatty liver and protects against hepatocellular carcinoma induced by hepatitis B virus X protein in a mouse model. Cancer Prev Res (Phila) 2012; 5 (7): 952–62
Howitz KT, Bitterman KJ, Cohen HY et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003; 425 (6954): 191–6.
Das S, Mitrovsky G, Vasanthi HR et al. Antiaging Properties of a GrapeDerived Antioxidant Are Regulated by Mitochondrial Balance of Fusion and Fission Leading to Mitophagy Triggered by a Signaling Network of Sirt1- Sirt3-Foxo3-PINK1-PARKIN. Oxid Med Cell Longev 2014; 2014: 345105.
Shi Y, Camici GG, Lüscher TF. Cardiovascular determinants of life span. Pflügers Archiv 2010; 459 (2): 315–24.
Tilstra JS, Robinson J, Wang AR et al. NF-kB inhibition delays DNA damade-induced senescence and aging in mice. J Clin Invest 2012; 122 (7): 2601–12
Scherz-Shouval R, Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends in Cell Biology 2007; 17 (9): 422–7
Krestinina, O., Baburina, Y., & Krestinin, R. (2021). Mitochondrion as a Target of Astaxanthin Therapy in Heart Failure. International journal of molecular sciences, 22(15), 7964. https://doi.org/10.3390/ijms22157964
Davinelli, S., Nielsen, M. E., & Scapagnini, G. (2018). Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients, 10(4), 522. https://doi.org/10.3390/nu10040522
Chang, M. X., & Xiong, F. (2020). Astaxanthin and its Effects in Inflammatory Responses and Inflammation-Associated Diseases: Recent Advances and Future Directions. Molecules (Basel, Switzerland), 25(22), 5342. https://doi.org/10.3390/molecules25225342
Kidd, P. (2011). Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Alternative medicine review : a journal of clinical therapeutic, 16(4), 355–364.
Kipshidze, M. (2023). Age-Related Changes in Proportions of Urolithins A, B, and 0. JUNIOR RESEARCHERS, 1(1), 17-29. DOI: https://doi.org/10.52340/2023.01.01.03
Li, J., Guo, C., & Wu, J. (2020). Astaxanthin in Liver Health and Disease: A Potential Therapeutic Agent. Drug design, development and therapy, 14, 2275–2285. https://doi.org/10.2147/DDDT.S230749
Janani, R., Anitha, R. E., Divya, P., Chonche, M., & Baskaran, V. (2022). Astaxanthin ameliorates hyperglycemia induced inflammation via PI3K/Akt-NF-κB signaling in ARPE-19 cells and diabetic rat retina. European journal of pharmacology, 926, 174979. https://doi.org/10.1016/j.ejphar.2022.174979
Yin, Y., Xu, N., Shi, Y., Zhou, B., Sun, D., Ma, B., Xu, Z., Yang, J., & Li, C. (2021). Astaxanthin Protects Dendritic Cells from Lipopolysaccharide-Induced Immune Dysfunction. Marine drugs, 19(6), 346. https://doi.org/10.3390/md19060346
Saini, R. K., Prasad, P., Lokesh, V., Shang, X., Shin, J., Keum, Y. S., & Lee, J. H. (2022). Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits-A Review of Recent Advancements. Antioxidants (Basel, Switzerland), 11(4), 795. https://doi.org/10.3390/antiox11040795
Deng, Z., Li, Y., Liu, H., Xiao, S., Li, L., Tian, J., Cheng, C., Zhang, G., & Zhang, F. (2019). The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Bioscience reports, 39(5), BSR20190189. https://doi.org/10.1042/BSR20190189
Golan, R., Gepner, Y., & Shai, I. (2019). Wine and Health-New Evidence. European journal of clinical nutrition, 72(Suppl 1), 55–59. https://doi.org/10.1038/s41430-018-0309-5
Castaldo, L., Narváez, A., Izzo, L., Graziani, G., Gaspari, A., Minno, G. D., & Ritieni, A. (2019). Red Wine Consumption and Cardiovascular Health. Molecules (Basel, Switzerland), 24(19), 3626. https://doi.org/10.3390/molecules24193626
Zhou, D. D., Luo, M., Huang, S. Y., Saimaiti, A., Shang, A., Gan, R. Y., & Li, H. B. (2021). Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxidative medicine and cellular longevity, 2021, 9932218. https://doi.org/10.1155/2021/9932218
Guarente L. (2007). Sirtuins in aging and disease. Cold Spring Harbor symposia on quantitative biology, 72, 483–488. https://doi.org/10.1101/sqb.2007.72.024
Galiniak, S., Aebisher, D., & Bartusik-Aebisher, D. (2019). Health benefits of resveratrol administration. Acta biochimica Polonica, 66(1), 13–21. https://doi.org/10.18388/abp.2018_2749
Schiassi, M. C. E. V., Souza, V. R., Lago, A. M. T., Campos, L. G., & Queiroz, F. (2018). Fruits from the Brazilian Cerrado region: Physico-chemical characterization, bioactive compounds, antioxidant activities, and sensory evaluation. Food chemistry, 245, 305–311. https://doi.org/10.1016/j.foodchem.2017.10.104
Meléndez-Martínez A. J. (2019). An Overview of Carotenoids, Apocarotenoids, and Vitamin A in Agro-Food, Nutrition, Health, and Disease. Molecular nutrition & food research, 63(15), e1801045. https://doi.org/10.1002/mnfr.201801045
Bohn, T., Desmarchelier, C., El, S. N., Keijer, J., van Schothorst, E., Rühl, R., & Borel, P. (2019). β-Carotene in the human body: metabolic bioactivation pathways - from digestion to tissue distribution and excretion. The Proceedings of the Nutrition Society, 78(1), 68–87. https://doi.org/10.1017/S0029665118002641
Taranova, A. G., Iakushina, L. M., & Spirichev, V. B. (1996). Karotinoidy v syvorotke krovi naseleniia Noril'ska [Carotenoids in the blood serum of the population of Noril'sk]. Voprosy pitaniia, (3), 25–30.
Sztretye, M., Dienes, B., Gönczi, M., Czirják, T., Csernoch, L., Dux, L., Szentesi, P., & Keller-Pintér, A. (2019). Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxidative medicine and cellular longevity, 2019, 3849692. https://doi.org/10.1155/2019/3849692