Age-Related Changes in Proportions of Urolithins A, B, and 0
pdf

How to Cite

Kipshidze, M. (2023). Age-Related Changes in Proportions of Urolithins A, B, and 0. Junior Researchers, 1(1), 17–29. https://doi.org/10.52340/2023.01.01.03

Abstract

Nowadays, aging is the actual theme above the world. Scientists are working on to prevent aging. In this article, we discuss how Urolithin effects on human body and aging process. Urolithin A (UA) is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA), complex polyphenols abundant in foods such as pomegranate, berries, and nuts. Mitochondria play a crucial role in cellular function and are particularly important in aging and decrepit cells by the function of mitophagy. During this process pathological mitochondria are killed, that controls the quality of mitochondrias and proteins. Mitochondrial dysfunction can trigger cellular responses associated with inflammation and cellular senescence. Urolithins (microbial metabolites) found in various tissues after ellagitannin consumption, has been demonstrated to possess antioxidant and anti-inflammatory effects.

https://doi.org/10.52340/2023.01.01.03
pdf

References

Annesley, S. J., & Fisher, P. R. (2019). Mitochondria in Health and Disease. Cells, 8(7), 680.

Belcaro, G., Saggino, A., Cornelli, U., Luzzi, R., Dugall, M., Hosoi, M., Feragalli, B., & Cesarone, M. R. (2018). Improvement in mood, oxidative stress, fatigue, and insomnia following supplementary management with Robuvit®. Journal of neurosurgical sciences, 62(4), 423–427.

Boyajian, J. L., Ghebretatios, M., Schaly, S., Islam, P., & Prakash, S. (2021). Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients, 13(12), 4550.

Bravo-San Pedro, J. M., Kroemer, G., & Galluzzi, L. (2017). Autophagy and Mitophagy in Cardiovascular Disease. Circulation research, 120(11), 1812–1824. doi.org/10.1161/CIRCRESAHA.117.311082

Brieger K, Schiavone S, Miller FJ Jr, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012 Aug 17;142:w13659. doi: 10.4414/smw.2012.13659. PMID: 22903797.

Bratic, A., & Larsson, N. G. (2013). The role of mitochondria in aging. The Journal of clinical investigation, 123(3), 951–957.

Chen, P., Chen, F., Lei, J., & Zhou, B. (2021). Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food & function, 12(23), 11938–11955.

Cho SI, Jo ER, Song H. Urolithin A attenuates auditory cell senescence by activating mitophagy. Sci Rep. 2022 May 11;12(1):7704. doi: 10.1038/s41598-022-11894-2. PMID: 35546176; PMCID: PMC9095590.

Cortés-Martín A , García-Villalba R , González-Sarrías A , Romo-Vaquero M , Loria-Kohen V , Ramírez-de-Molina A , Tomás-Barberán FA , Selma MV , Espín JC . The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct. 2018 Aug 15;9(8):4100-4106. Doi: 10.1039/c8fo00956b

Chen, P., Chen, F., Lei, J., & Zhou, B. (2021). Gut microbial metabolite urolithin B attenuates intestinal immunity function in vivo in aging mice and in vitro in HT29 cells by regulating oxidative stress and inflammatory signalling. Food & function, 12(23), 11938–11955.

Chichinadze et al. 2012. A. A new class of RNAs and the centrosomal hypothesis of cell aging. Adv Gerontol 2, 287–291.

Chichinadze et al. 2012. Discovery of centrosomal RNA and centrosomal hypothesis of cellular ageing and differentiation. Nucleosides Nucleotides Nucleic Acids. Doi: 10.1080/15257770.2011.648362.

D'Amico, D., Andreux, P. A., Valdés, P., Singh, A., Rinsch, C., & Auwerx, J. (2021). Impact of the Natural Compound Urolithin A on Health, Disease, and Aging. Trends in molecular medicine, 27(7), 687–699.

Denk, D., Petrocelli, V., Conche, C., Drachsler, M., Ziegler, P. K., Braun, A., Kress, A., Nicolas, A. M., Mohs, K., Becker, C., Neurath, M. F., Farin, H. F., Buchholz, C. J., Andreux, P. A., Rinsch, C., & Greten, F. R. (2022). Expansion of T memory stem cells with superior anti-tumor immunity by Urolithin A-induced mitophagy. Immunity, 55(11), 2059–2073.e8.

Eldeeb, M. A., Thomas, R. A., Ragheb, M. A., Fallahi, A., & Fon, E. A. (2022). Mitochondrial quality control in health and in Parkinson's disease. Physiological reviews, 102(4), 1721–1755.

Elmore S. (2007). Apoptosis: a review of programmed cell death. Toxicologic pathology, 35(4), 495–516. doi.org/10.1080/01926230701320337

Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–247.doi.org/10.1038/35041687

Fonseca, É., Marques, C. C., Pimenta, J., Jorge, J., Baptista, M. C., Gonçalves, A. C., & Pereira, R. M. L. N. (2021). Anti-Aging Effect of Urolithin A on Bovine Oocytes In Vitro. Animals : an open access journal from MDPI, 11(7), 2048.

García-Villalba R, Giménez-Bastida JA, Cortés-Martín A, Ávila-Gálvez MÁ, Tomás-Barberán FA, Selma MV, Espín JC, González-Sarrías A. Urolithins: a Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol Nutr Food Res. 2022 Nov;66(21):e2101019. doi: 10.1002/mnfr.202101019. Epub 2022 Feb 15. PMID: 35118817; PMCID: PMC9787965.

Imray, C., Wright, A., Subudhi, A., & Roach, R. (2010). Acute mountain sickness: pathophysiology, prevention, and treatment. Progress in cardiovascular diseases, 52(6), 467–484.

Jaba, T. 2022. Dasatinib and Quercetin: Short-term Simultaneous Administration Yields Senolytic Effect in Humans. Issues and Developments in Medicine and Medical Research. doi.org/10.9734/bpi/idmmr/v2/15155D

Khrapko, K., & Turnbull, D. (2014). Mitochondrial DNA mutations in aging. Progress in molecular biology and translational science, 127, 29–62. doi.org/10.1016/B978-0-12-394625-6.00002-7

Huang, Y. Q., Li, M. X., Wang, C., & Li, Y. P. (2021). Zhen ci yan jiu = Acupuncture research, 46(4), 301–305. doi.org/10.13702/j.1000-0607.200599

Psarra, A. M., & Sekeris, C. E. (2008). Nuclear receptors and other nuclear transcription factors in mitochondria: regulatory molecules in a new environment. Biochimica et biophysica acta, 1783(1), 1–11.

Kleele, T., Rey, T., Winter, J., Zaganelli, S., Mahecic, D., Perreten Lambert, H., Ruberto, F. P., Nemir, M., Wai, T., Pedrazzini, T., & Manley, S. (2021). Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature, 593(7859), 435–439.

Lezhava, T., Monaselidze, J., Jokhadze, T. et al. Gerontology research in Georgia. Biogerontology 12, 87–91 (2011). https://doi.org/10.1007/s10522-010-9283-6

Liu, S., D'Amico, D., Shankland, E., Bhayana, S., Garcia, J. M., Aebischer, P., Rinsch, C., Singh, A., & Marcinek, D. J. (2022). Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial. JAMA network open, 5(1), e2144279.

Lu, C., Li, X., Gao, Z., Song, Y., & Shen, Y. (2022). Urolithins and intestinal health. Drug discoveries & therapeutics, 16(3), 105–111.

Mittler R. (2017). ROS Are Good. Trends in plant science, 22(1), 11–19. doi.org/10.1016/j.tplants.2016.08.002

Nolfi-Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox biology, 37, 101674. doi.org/10.1016/j.redox.2020.101674

Nunnari, J., & Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell, 148(6), 1145–1159.

Ng, M. Y. W., Wai, T., & Simonsen, A. (2021). Quality control of the mitochondrion. Developmental cell, 56(7), 881–905.

Panconesi, R., Widmer, J., Carvalho, M. F., Eden, J., Dondossola, D., Dutkowski, P., & Schlegel, A. (2022). Mitochondria and ischemia reperfusion injury. Current opinion in organ transplantation, 27(5), 434–445. doi.org/10.1097/MOT.0000000000001015

Park, J., Cho, J., & Song, E. J. (2020). Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Archives of pharmacal research, 43(11), 1144–1161. doi.org/10.1007/s12272-020-01281-8

Quan Y, Xin Y, Tian G, Zhou J, Liu X. Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. Oxid Med Cell Longev. 2020 Mar 26;2020:9423593. doi: 10.1155/2020/9423593. PMID: 32308810; PMCID: PMC7139858.

Rogovskii V. S. (2022). The Therapeutic Potential of Urolithin A for Cancer Treatment and Prevention. Current cancer drug targets, 22(9), 717–724. doi.org/10.2174/1568009622666220602125343

Rossiello, F., Jurk, D., Passos, J. F., & d'Adda di Fagagna, F. (2022). Telomere dysfunction in ageing and age-related diseases. Nature cell biology, 24(2), 135–147. doi.org/10.1038/s41556-022-00842-x

Singh, A., D'Amico, D., Andreux, P. A., Fouassier, A. M., Blanco-Bose, W., Evans, M., Aebischer, P., Auwerx, J., & Rinsch, C. (2022). Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell reports. Medicine, 3(5), 100633. doi.org/10.1016/j.xcrm.2022.100633

Sydykov, A., Mamazhakypov, A., Maripov, A., Kosanovic, D., Weissmann, N., Ghofrani, H. A., Sarybaev, A. S., & Schermuly, R. T. (2021). Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. International journal of environmental research and public health, 18(4), 1692.

Stefanatos, R., & Sanz, A. (2018). The role of mitochondrial ROS in the aging brain. FEBS letters, 592(5), 743–758. doi.org/10.1002/1873-3468.12902

Tao, H., Tao, Y., Yang, C., Li, W., Zhang, W., Li, X., Gu, Y., Hong, Y., Yang, H., Liu, Y., Yang, X., & Geng, D. (2022). Gut Metabolite Urolithin A Inhibits Osteoclastogenesis and Senile Osteoporosis by Enhancing the Autophagy Capacity of Bone Marrow Macrophages. Frontiers in pharmacology, 13, 875611.

Tkemaladze J. 2022. Reduction, proliferation, and differentiation defects of stem cells over time: a consequence of selective accumulation of old centrioles in the stem cells? Mol Biol Rep. doi: 10.1007/s11033-022-08203-5

Wang, T. W., Johmura, Y., Suzuki, N., Omori, S., Migita, T., Yamaguchi, K., Hatakeyama, S., Yamazaki, S., Shimizu, E., Imoto, S., Furukawa, Y., Yoshimura, A., & Nakanishi, M. (2022). Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature, 611(7935), 358–364.

Yan, C., Duanmu, X., Zeng, L., Liu, B., & Song, Z. (2019). Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells, 8(4), 379. doi.org/10.3390/cells8040379

Zhu, X., Chen, Z., Shen, W., Huang, G., Sedivy, J. M., Wang, H., & Ju, Z. (2021). Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal transduction and targeted therapy, 6(1), 245.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...