Dynamic Tumor Microenvironment Theory: A Multifaceted Approach to Tumor Research and Biochemistry
DOI:
https://doi.org/10.52340/spectri.2024.09.01.06ანოტაცია
Advances in traditional cancer treatments, such as standard cytotoxic chemotherapy [1, 36, 38, 39], radiation therapy [2, 34, 35], and surgery [3], have led to a decline in cancer mortality over the past decades; However, serious problems remain, often leading to tumor recurrence and death. These issues have led to research into mutation therapy for cancer. While standard chemotherapy uses cytotoxic agents that kill cancer cells and cause normal cells to divide rapidly, targeted therapy targets abnormal proteins encoded by mutated genes [4]. Because normal cells do not have the oncogenic mutations used for drug targeting, there is often a high degree of differential sensitivity of malignant and benign cells to targeted therapy. As a result, targeted therapy often results in rapid and dramatic tumor regression while limiting the potential for off-target toxicity associated with traditional chemotherapy. Peptides have emerged as promising tools in cancer therapy, offering targeted and specific approaches to treatment. Their ability to bind selectively to cancer cell receptors and disrupt crucial signaling pathways makes them valuable candidates. Some peptides, like Antimicrobial Peptides (AMPs) and Cell-Penetrating Peptides (CPPs), exhibit cytotoxic effects on cancer cells, showcasing their potential as anticancer agents. Furthermore, peptide-based drugs, including monoclonal antibodies and vaccines, target specific molecules related to cancer development. The unique properties of peptides, such as cell-penetrating abilities and inhibition of protein-protein interactions, enhance their efficacy while minimizing collateral damage to healthy tissues. Despite promising advancements, challenges like stability and immunogenicity need addressing. Ongoing research seeks to optimize peptide structures and delivery methods for improved cancer therapeutic outcomes. In summary, peptides represent a transformative frontier in cancer treatment, holding the promise of more effective and personalized options for patients [40]. Thus, the overall strategy for anticancer drug discovery has shifted from cytotoxic agents to identifying actionable tumor-specific mutations and developing molecularly targeted agents. The rapid development of immunotherapy has also radically changed the landscape of cancer treatment [31, 32, 33] .
##plugins.generic.usageStats.downloads##
წყაროები
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020 Feb 17;2(1): zcaa002. doi: 10.1093/narcan/zcaa002. PMID: 34316682; PMCID: PMC8209987.
Sagae S, Toita T, Matsuura M, Saito M, Matsuda T, Sato N, Shimizu A, Endo T, Fujii M, Gaffney DK, Small W Jr. Improvement in radiation techniques for locally advanced cervical cancer during the last two decades. Int J Gynecol Cancer. 2023 Aug 7;33(8):1295-1303. doi: 10.1136/ijgc-2022-004230. PMID: 37041022; PMCID: PMC10423558.
Michael S. Sabel MD, Kathleen M. Diehl MD and Alfred E. Chang MD Principles of Surgical Therapy in Oncology. Oncology pp 58–72.
Kuijk E, Kranenburg O, Cuppen E, Van Hoeck A. Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue. Nat Commun. 2022 Oct 7;13(1):5915. doi: 10.1038/s41467-022-33663-5. PMID: 36207433; PMCID: PMC9546852.
Zafari N, Khosravi F, Rezaee Z, Esfandyari S, Bahiraei M, Bahramy A, Ferns GA, Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J Clin Lab Anal. 2022 Aug;36(8): e24585. doi: 10.1002/jcla.24585. Epub 2022 Jul 8. PMID: 35808903; PMCID: PMC9396196.
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel). 2023 Apr 5;8(2):146. doi: 10.3390/biomimetics8020146. PMID: 37092398; PMCID: PMC10123695.
Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020 Apr 7;18(1):59. doi: 10.1186/s12964-020-0530-4. PMID: 32264958; PMCID: PMC7140346.
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MF, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol. 2022 Jun 23; 12:891652. doi: 10.3389/fonc.2022.891652. PMID: 35814435; PMCID: PMC9262248.
Shlyakhtina Y, Moran KL, Portal MM. Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers (Basel). 2021 Mar 18;13(6):1380. doi: 10.3390/cancers13061380. PMID: 33803675; PMCID: PMC8002988.
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment. Front Pharmacol. 2022 May 24; 13:868695. doi: 10.3389/fphar.2022.868695. PMID: 35685630; PMCID: PMC9171538.
Pernot S, Evrard S, Khatib AM. The Give-and-Take Interaction Between the Tumor Microenvironment and Immune Cells Regulating Tumor Progression and Repression. Front Immunol. 2022 Apr 13; 13:850856. doi: 10.3389/fimmu.2022.850856. PMID: 35493456; PMCID: PMC9043524.
Yue B. Biology of the extracellular matrix: an overview. J Glaucoma. 2014 Oct-Nov;23(8 Suppl 1): S20-3. doi: 10.1097/IJG.0000000000000108. PMID: 25275899; PMCID: PMC4185430.
Cox TR, Erler JT. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis Model Mech. 2011 Mar;4(2):165-78. doi: 10.1242/dmm.004077. Epub 2011 Feb 14. PMID: 21324931; PMCID: PMC3046088.
Li F, Simon MC. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell. 2020 Jul 20;54(2):183-195. doi: 10.1016/j.devcel.2020.06.018. Epub 2020 Jul 7. PMID: 32640203; PMCID: PMC7375918.
Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, Li H, Huet G, Yuan Q, Wigal T, Butt Y, Ni M, Torrealba J, Oliver D, Lenkinski RE, Malloy CR, Wachsmann JW, Young JD, Kernstine K, DeBerardinis RJ. Lactate Metabolism in Human Lung Tumors. Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019. PMID: 28985563; PMCID: PMC5684706.
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (2020). 2023 Jan 23;4(1): e203. doi: 10.1002/mco2.203. PMID: 36703877; PMCID: PMC9870816.
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab. 2020 Mar; 33:48-66. doi: 10.1016/j.molmet.2019.07.006. Epub 2019 Jul 27. PMID: 31395464; PMCID: PMC7056923.
Castaño M, González-Cantó E, Aghababyan C, Tomás-Pérez S, Oto J, Herranz R, Medina P, Götte M, Mc Cormack BA, Marí-Alexandre J, Gilabert-Estellés J. New Roles for Old Friends: Involvement of the Innate Immune System in Tumor Progression. Int J Mol Sci. 2023 Apr 20;24(8):7604. doi: 10.3390/ijms24087604. PMID: 37108767; PMCID: PMC10144334.
Hoeks C, Duran G, Hellings N, Broux B. When Helpers Go Above and Beyond: Development and Characterization of Cytotoxic CD4+ T Cells. Front Immunol. 2022 Jul 12; 13:951900. doi: 10.3389/fimmu.2022.951900. PMID: 35903098; PMCID: PMC9320319.
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci. 2020 Oct 28;21(21):8011. doi: 10.3390/ijms21218011. PMID: 33126494; PMCID: PMC7663252.
Hoeben A, Joosten EAJ, van den Beuken-van Everdingen MHJ. Personalized Medicine: Recent Progress in Cancer Therapy. Cancers (Basel). 2021 Jan 11;13(2):242. doi: 10.3390/cancers13020242. PMID: 33440729; PMCID: PMC7826530.
Zhu X, Fan C, Xiong Z, Chen M, Li Z, Tao T, Liu X. Development and application of oncolytic viruses as the nemesis of tumor cells. Front Microbiol. 2023 Jun 12; 14:1188526. doi: 10.3389/fmicb.2023.1188526. PMID: 37440883; PMCID: PMC10335770.
Bupathi M, Wu C. Biomarkers for immune therapy in colorectal cancer: mismatch-repair deficiency and others. J Gastrointest Oncol. 2016 Oct;7(5):713-720. doi: 10.21037/jgo.2016.07.03. PMID: 27747085; PMCID: PMC5056251.
Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol. 2021 Apr 24;12(4):217-237. doi: 10.5306/wjco. v12.i4.217. PMID: 33959476; PMCID: PMC8085514.
Mazo C, Barron S, Mooney C, Gallagher WM. Multi-Gene Prognostic Signatures and Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in ER-positive, HER2-negative Breast Cancer Patients. Cancers (Basel). 2020 May 1;12(5):1133. doi: 10.3390/cancers12051133. PMID: 32369904; PMCID: PMC7281334.
Zheng-Lin B, O'Reilly EM. Pancreatic ductal adenocarcinoma in the era of precision medicine. Semin Oncol. 2021 Feb;48(1):19-33. doi: 10.1053/j.seminoncol.2021.01.005. Epub 2021 Feb 11. PMID: 33637355; PMCID: PMC8355264.
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014 Jun 20;344(6190):1396-401. doi: 10.1126/science.1254257. Epub 2014 Jun 12. PMID: 24925914; PMCID: PMC4123637.
Persico P, Lorenzi E, Dipasquale A, Pessina F, Navarria P, Politi LS, Santoro A, Simonelli M. Checkpoint Inhibitors as High-Grade Gliomas Treatment: State of the Art and Future Perspectives. J Clin Med. 2021 Mar 26;10(7):1367. doi: 10.3390/jcm10071367. PMID: 33810532; PMCID: PMC8036455.
Uckun FM, Qazi S, Hwang L, Trieu VN. Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGFβ2-Targeting RNA Therapeutic: A Post-hoc Analysis with Long-Term Follow-Up. Cancers (Basel). 2019 Nov 28;11(12):1892. doi: 10.3390/cancers11121892. PMID: 31795071; PMCID: PMC6966490.
Akinleye A., Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 2019; 12:92.
Jiao P., Geng Q., Jin P., Su G., Teng H., Dong J., Yan B. Small molecules as PD-1/PD-L1 pathway modulators for cancer immunotherapy. Curr. Pharm. Des. 2018; 24:4911–4920.
Liu X., Guo C.Y., Tou F.F., Wen X.M., Kuang Y.K., Zhu Q., Hu H. Association of PD-L1 expression status with the efficacy of PD-1/PD-L1 inhibitors and overall survival in solid tumours: a systematic review and meta-analysis. Int. J. Cancer. 2019; doi:10.1002/ijc.32744.
Roviello G., Corona S.P., Nesi G., Mini E. Results from a meta-analysis of immune checkpoint inhibitors in first-line renal cancer patients: does PD-L1 matter. Ther. Adv. Med. Oncol. 2019; 11: doi:10.1177/1758835919861905.
Green J, Kirwan J, Tierney J, et al. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst Rev 2005;3:CD002225. 10.1002/14651858.CD002225.
Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration. Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: a systematic review and meta-analysis of individual patient data from 18 randomized trials. J Clin Oncol 2008; 26:5802–12. 10.1200/JCO.2008.16.4368
Toita T, Kitagawa R, Hamano T, et al. Feasibility and acute toxicity of concurrent chemoradiotherapy (CCRT) with high-dose rate intracavitary brachytherapy (HDR-ICBT) and 40-mg/m2 weekly cisplatin for Japanese patients with cervical cancer: results of a multi-institutional phase 2 study (JGOG1066). Int J Gynecol Cancer 2012; 22:1420–6. 10.1097/IGC.0b013e3182647265
Hsu HC, Li X, Curtin JP, et al. Surveillance epidemiology and end results analysis demonstrates improvement in overall survival for cervical cancer patients treated in the era of concurrent chemoradiotherapy. Front Oncol 2015; 5:81. 10.3389/fonc.2015.00081
Hsu HC, Li X, Curtin JP, et al. Surveillance epidemiology and end results analysis demonstrates improvement in overall survivalfor cervical cancer patients treated in the era of concurrent chemoradiotherapy. Front Oncol 2015; 5:81.
Shrivastava S, Mahantshetty U, Engineer R, et al. Cisplatinchemoradiotherapy vs radiotherapy in FIGO stage IIIB squamous cell carcinoma of the uterine cervix: a randomized clinical trial. JAMA Oncol 2018; 4:506–13.
Kurrikoff K, Aphkhazava D, Langel Ü. The future of peptides in cancer treatment. Curr Opin Pharmacol. 2019 Aug;47:27-32. doi: 10.1016/j.coph.2019.01.008. Epub 2019 Mar 8. PMID: 30856511.
Walker C, Mojares E, Del Río Hernández A. Role of Extracellular Matrix in Development and Cancer Progression. Int J Mol Sci. 2018 Oct 4;19(10):3028. doi: 10.3390/ijms19103028. PMID: 30287763; PMCID: PMC6213383.
ჩამოტვირთვები
გამოქვეყნებული
როგორ უნდა ციტირება
გამოცემა
სექცია
ლიცენზია
ეს ნამუშევარი ლიცენზირებულია Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 საერთაშორისო ლიცენზიით .