AMPA რეცეპტორის GluA1 ქვედანაყოფების ეგზოსომური წარმოქმნა თაგვებში და ანთებითი ტკივილის მოდულირება

AMPA რეცეპტორის GluA1 ქვედანაყოფების ეგზოსომური წარმოქმნა თაგვებში და ანთებითი ტკივილის მოდულირება

ავტორები

  • დავით აფხაზავა ალტე უნივერსიტეტი image/svg+xml
  • ნოდარ სულაშვილი საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი image/svg+xml
  • ია ეგნატიევი საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი image/svg+xml
  • მანანა გიორგობიანი საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი image/svg+xml
  • მაია ნოზაძე აშშ-ს არმიის სამედიცინო კვლევის დირექტორატი - საქართველო
  • ნანი ვეკუა საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი image/svg+xml
  • ნინო ჯაფარიძე გრიგოლ რობაქიძის სახელობის უნივერსიტეტი image/svg+xml

DOI:

https://doi.org/10.52340/spectri.2024.09.01.05

საკვანძო სიტყვები:

ეგზოსომა, AMPA რეცეპტორი, GLUA1 ქვედანაყოფი, თაგვი, მოდულირებული, ანთებითი ტკივილი

ანოტაცია

α-ამინო-3-ჰიდროქსი-5-მეთილ-4-იზოქსაზოლპროპიონის მჟავას (AMPA ტიპის) გლუტამატის რეცეპტორები (AMPAR) მნიშვნელოვან როლს ასრულებენ ცენტრალურ ნერვულ სისტემაში სინაფსურ პლასტიკურობაში. მიუხედავად იმისა, რომ არსებობს ანატომიური მტკიცებულება, რომელიც ვარაუდობს ამპარ-ების ექსპრესიას პერიფერიულ ნერვულ სისტემაში, ამ რეცეპტორების ფუნქციური მნიშვნელობა in vivo ბოლომდე გარკვეული არ არის. ამ ცოდნის ხარვეზის აღმოსაფხვრელად, ჩვენ გამოვიყენეთ თაგვები  რომელთა დნმ-დან ექსკლუზიურად პერიფერიული ტკივილის ნეირონებში (ნოციცეპტორები) ამოჭრილია AMPAR-ების ძირითადი სუბერთეული GluA1.  რაც მთავარია, ჩვენ შევინარჩუნეთ ამ სუბერთეულის არსებობა ცენტრალურ ნერვულ სისტემაში. GluA1-ის ნოციცეპტორისთვის სპეციფიური დელეცია იწვევს კალციუმის გამტარიანობის დარღვევას და კაპსაიცინის სტიმულაციაზე პასუხის დაქვეითებას ნოციცეპტორებში. ცნობილია, რომ GluA1-ის წაშლა იწვევს მექანიკური ჰიპერმგრძნობელობის დაქვეითება და სენსიბილიზაცია ქრონიკული ანთებითი ტკივილისა და ართრიტის მოდელებში.  GluA1-ის შემცველი ამპარ-ები ასრულებენ მარეგულირებელ როლს ანთებით ქსოვილებში მტკივნეულ სტიმულებზე ნოციცეპტორულ პასუხებში, პერიფერიიდან ზურგის ტვინში გადაცემულ აგზნებად სიგნალებზე ზემოქმედებით.  ეგზოსომები, უჯრედების მიერ გამოყოფილი ნანონაწილაკები (როგორც წესი, ზომით 30-დან 150 ნმ-მდე მერყეობს), ატარებენ ბიოლოგიური მოლეკულების მრავალფეროვან მასივს, მათ შორის ნუკლეინის მჟავებს, ცილებს და ლიპიდებს. ეგზოსომები ცნობილია მათი გადამწყვეტი როლით უჯრედშორისი კომუნიკაციის შუამავლობაში. მათი თანდაყოლილი სტაბილურობის, დაბალი იმუნოგენურობის და შთამბეჭდავი ქსოვილის/უჯრედის შეღწევის შესაძლებლობების გამოყენებით, ეგზოსომები განიხილება როგორც მოწინავე პლატფორმები წამლებისა და გენების მიზანმიმართული მიწოდებისთვის. ამ საკითხის გადასაჭრელად, ჩვენ გამოვიყენეთ თაგვები, რომლებსაც  არ ჰქონდათ ძირითადი AMPAR სუბერთეული, GluA1, პერიფერიული ტკივილის ნეირონებში (ნოციცეპტორები), ამავდროულად შენარჩუნებული იყო ამ ქვედანაყოფების გამოხატულება ცენტრალურ ნერვულ სისტემაში. GluA1-ის ნოციცეპტორული სპეციფიური წაშლა იწვევს კალციუმის გამტარიანობის დაქვეითებას და კაპსაიცინის ინდუცირებული ნოციცეპტორის აქტივაციის დაქვეითებას. GluA1-ის წაშლა იწვევს მექანიკური ჰიპერმგრძნობელობის დაქვეითებას და სენსიბილიზაციას ქრონიკული ანთებითი ტკივილისა და ართრიტის მოდელებში. ჩვენ შევქმენით ეგზოსომები, რომლებიც შეიცავს GluA1-ს და შევიყვანეთ ისინი თაგვებში ნოციცეპტორების გარშემო, რმაც საპირისპირო ეფექტი გამოიწვია GluA1-ის დელეციასთან შედარებით. თაგვები, რომლებსაც მკურნალობდნენ ეგზოსომებით, უფრო მგრძნობიარენი იყვნენ ტკივილის მიმართ.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

ავტორის ბიოგრაფიები

დავით აფხაზავა, ალტე უნივერსიტეტი

ასოცირებული პროფესორი

ნოდარ სულაშვილი, საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი

ასოცირებული პროფესორი

ია ეგნატიევი, საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი

ასოცირებული პროფესორი

მანანა გიორგობიანი, საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი

პროფესორი

მაია ნოზაძე, აშშ-ს არმიის სამედიცინო კვლევის დირექტორატი - საქართველო

მედიცინის დოქტორი

ნანი ვეკუა, საქართველოს დავით აღმაშენებლის სახელობის უნივერსიტეტი

ასოცირებული პროფესორი

ნინო ჯაფარიძე, გრიგოლ რობაქიძის სახელობის უნივერსიტეტი

ასოცირებული პროფესორი

წყაროები

Kamalova A, Nakagawa T. AMPA receptor structure and auxiliary subunits. J Physiol. 2021 Jan;599(2):453-469. doi: 10.1113/JP278701. Epub 2020 Feb 18. PMID: 32004381; PMCID: PMC7392800.

Amin JB, Salussolia CL, Chan K, Regan MC, Dai J, Zhou HX, Furukawa H, Bowen ME & Wollmuth LP. (2017). Divergent roles of a peripheral transmembrane segment in AMPA and NMDA receptors. J Gen Physiol 149, 661–680.

Armstrong N & Gouaux E. (2000). Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181.

Armstrong N, Sun Y, Chen GQ & Gouaux E. (1998). Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917.

Ayalon G & Stern-Bach Y. (2001). Functional assembly of AMPA and kainate receptors is mediated by several discrete protein-protein interactions. Neuron 31, 103–113.

Azumaya CM, Days EL, Vinson PN, Stauffer S, Sulikowski G, Weaver CD & Nakagawa T. (2017). Screening for AMPA receptor auxiliary subunit specific modulators. PLoS One 12, e0174742.

Ben-Yaacov A, Gillor M, Haham T, Parsai A, Qneibi M & Stern-Bach Y. (2017). Molecular Mechanism of AMPA Receptor Modulation by TARP/Stargazin. Neuron.

Solomonia RO, Meparishvili M, Mikautadze E, Kunelauri N, Apkhazava D, McCabe BJ. AMPA receptor phosphorylation and recognition memory: learning-related, time-dependent changes in the chick brain following filial imprinting. Exp Brain Res. 2013 Apr;226(2):297-308. doi: 10.1007/s00221-013-3435-2. Epub 2013 Feb 20. PMID: 23423166.

Megat S, Ray PR, Tavares-Ferreira D, Moy JK, Sankaranarayanan I, Wanghzou A, Fang Lou T, Barragan-Iglesias P, Campbell ZT, Dussor G, Price TJ. Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. J Neurosci. 2019 Aug 28;39(35):6829-6847. doi: 10.1523/JNEUROSCI.2663-18.2019. Epub 2019 Jun 28. Erratum in: J Neurosci. 2022 Jan 26;42(4):717. PMID: 31253755; PMCID: PMC6733558.

Walters ET. Nociceptors as chronic drivers of pain and hyperreflexia after spinal cord injury: an adaptive-maladaptive hyperfunctional state hypothesis. Front Physiol. 2012 Aug 2;3:309. doi: 10.3389/fphys.2012.00309. PMID: 22934060; PMCID: PMC3429080.

Dublin P, Hanani M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun. 2007 Jul;21(5):592-8. doi: 10.1016/j.bbi.2006.11.011. Epub 2007 Jan 11. PMID: 17222529.

Yam MF, Loh YC, Tan CS, Khadijah Adam S, Abdul Manan N, Basir R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int J Mol Sci. 2018 Jul 24;19(8):2164. doi: 10.3390/ijms19082164. PMID: 30042373; PMCID: PMC6121522.

Cobos EJ, Ghasemlou N, Araldi D, Segal D, Duong K, Woolf CJ. Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia. Pain. 2012 Apr;153(4):876-884. doi: 10.1016/j.pain.2012.01.016. Epub 2012 Feb 15. PMID: 22341563; PMCID: PMC3319437.

Gangadharan V, Wang R, Ulzhöfer B, Luo C, Bardoni R, Bali KK, Agarwal N, Tegeder I, Hildebrandt U, Nagy GG, Todd AJ, Ghirri A, Häussler A, Sprengel R, Seeburg PH, MacDermott AB, Lewin GR, Kuner R. Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice. J Clin Invest. 2011 Apr;121(4):1608-23. doi: 10.1172/JCI44911. Epub 2011 Mar 7. PMID: 21383497; PMCID: PMC3069784.

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb 7;367(6478):eaau6977. doi: 10.1126/science.aau6977. PMID: 32029601; PMCID: PMC7717626.

Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers (Basel). 2023 Mar 27;15(7):1992. doi: 10.3390/cancers15071992. PMID: 37046653; PMCID: PMC10093369.

Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig. 2021 Apr 2;8:7. doi: 10.21037/sci-2020-037. PMID: 33969112; PMCID: PMC8100822.

Cano A, Muñoz-Morales Á, Sánchez-López E, Ettcheto M, Souto EB, Camins A, Boada M, Ruíz A. Exosomes-Based Nanomedicine for Neurodegenerative Diseases: Current Insights and Future Challenges. Pharmaceutics. 2023 Jan 16;15(1):298. doi: 10.3390/pharmaceutics15010298. PMID: 36678926; PMCID: PMC9863585.

Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci. 2023 Oct 26;24(21):15635. doi: 10.3390/ijms242115635. PMID: 37958619; PMCID: PMC10648512.

Ma Y, Brocchini S, Williams GR. Extracellular vesicle-embedded materials. J Control Release. 2023 Sep;361:280-296. doi: 10.1016/j.jconrel.2023.07.059. Epub 2023 Aug 9. PMID: 37536545.

Li ZH, Cui Y, Liu BY, Zhao DW. Extracellular vesicles derived from mesenchymal stem cells mediate extracellular matrix remodeling in osteoarthritis through the transport of microRNA-29a. World J Stem Cells. 2024 Feb 26;16(2):191-206. doi: 10.4252/wjsc.v16.i2.191. PMID: 38455098; PMCID: PMC10915956.

Royo M, Escolano BA, Madrigal MP, Jurado S. AMPA Receptor Function in Hypothalamic Synapses. Front Synaptic Neurosci. 2022 Jan 31;14:833449. doi: 10.3389/fnsyn.2022.833449. PMID: 35173598; PMCID: PMC8842481.

Chen S & Gouaux E. (2019). Structure and mechanism of AMPA receptor - auxiliary protein complexes. Curr Opin Struct Biol 54, 104–111.

Golubeva EA, Lavrov MI, Radchenko EV, Palyulin VA. Diversity of AMPA Receptor Ligands: Chemotypes, Binding Modes, Mechanisms of Action, and Therapeutic Effects. Biomolecules. 2022 Dec 27;13(1):56. doi: 10.3390/biom13010056. PMID: 36671441; PMCID: PMC9856200.

Twomey EC, Yelshanskaya MV, Sobolevsky AI. Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes. J Gen Physiol. 2019 Dec 2;151(12):1347-1356. doi: 10.1085/jgp.201812264. Epub 2019 Oct 15. PMID: 31615831; PMCID: PMC6888759.

Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. Adv Protein Chem Struct Biol. 2016;103:203-61. doi: 10.1016/bs.apcsb.2015.10.004. Epub 2015 Nov 19. PMID: 26920691.

Zhao Y, Chen S, Swensen AC, Qian WJ, Gouaux E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science. 2019 Apr 26;364(6438):355-362. doi: 10.1126/science.aaw8250. Epub 2019 Apr 11. PMID: 30975770; PMCID: PMC6701862.

Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012 Jun 1;4(6):a005710. doi: 10.1101/cshperspect.a005710. PMID: 22510460; PMCID: PMC3367554.

Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci. 2019 Jun;76(11):2133-2169. doi: 10.1007/s00018-019-03068-7. Epub 2019 Apr 1. PMID: 30937469; PMCID: PMC6502786.

Cho CH, St-Gelais F, Zhang W, Tomita S & Howe JR. (2007). Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents. Neuron 55, 890–904.

Qneibi M, Jumaa H, Bdir S, Al-Maharik N. Electrophysiological Assessment of Newly Synthesized 2,3-Benzodiazepine Derivatives for Inhibiting the AMPA Receptor Channel. Molecules. 2023 Aug 15;28(16):6067. doi: 10.3390/molecules28166067. PMID: 37630319; PMCID: PMC10458471.

Emond MR, Montgomery JM, Huggins ML, Hanson JE, Mao L, Huganir RL, Madison DV. AMPA receptor subunits define properties of state-dependent synaptic plasticity. J Physiol. 2010 Jun 1;588(Pt 11):1929-46. doi: 10.1113/jphysiol.2010.187229. Epub 2010 Mar 29. PMID: 20351044; PMCID: PMC2901981.

Gan Q, Salussolia CL, Wollmuth LP. Assembly of AMPA receptors: mechanisms and regulation. J Physiol. 2015 Jan 1;593(1):39-48. doi: 10.1113/jphysiol.2014.273755. Epub 2014 Aug 1. PMID: 25556786; PMCID: PMC4293052.

Sathler MF, Khatri L, Roberts JP, Schmidt IG, Zaytseva A, Kubrusly RCC, Ziff EB, Kim S. Phosphorylation of the AMPA receptor subunit GluA1 regulates clathrin-mediated receptor internalization. J Cell Sci. 2021 Sep 1;134(17):jcs257972. doi: 10.1242/jcs.257972. Epub 2021 Sep 7. PMID: 34369573; PMCID: PMC8445600.

Chater TE, Goda Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci. 2014 Nov 27;8:401. doi: 10.3389/fncel.2014.00401. PMID: 25505875; PMCID: PMC4245900.

Wu D, Bacaj T, Morishita W, Goswami D, Arendt KL, Xu W, Chen L, Malenka RC, Südhof TC. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature. 2017 Apr 20;544(7650):316-321. doi: 10.1038/nature21720. Epub 2017 Mar 29. PMID: 28355182; PMCID: PMC5734942.

Rossi B, Maton G, Collin T. Calcium-permeable presynaptic AMPA receptors in cerebellar molecular layer interneurones. J Physiol. 2008 Nov 1;586(21):5129-45. doi: 10.1113/jphysiol.2008.159921. Epub 2008 Sep 4. PMID: 18772200; PMCID: PMC2652151.

Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci. 2013 Mar;15(1):11-27. doi: 10.31887/DCNS.2013.15.1/jhenley. PMID: 23576886; PMCID: PMC3622464.

Todd AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci. 2010 Dec;11(12):823-36. doi: 10.1038/nrn2947. Epub 2010 Nov 11. PMID: 21068766; PMCID: PMC3277941.

Millan, M.J. (2002). Descending control of pain. Prog. Neurobiol. 66, 355–474.

Larsson M, Broman J. Translocation of GluR1-containing AMPA receptors to a spinal nociceptive synapse during acute noxious stimulation. J Neurosci. 2008. July 9;28(28):7084–7090.

Huganir RL & Nicoll RA. (2013). AMPARs and synaptic plasticity: the last 25 years. Neuron 80, 704–717.

Park P, Kang H, Sanderson TM, Bortolotto ZA, Georgiou J, Zhuo M, Kaang BK, Collingridge GL. The Role of Calcium-Permeable AMPARs in Long-Term Potentiation at Principal Neurons in the Rodent Hippocampus. Front Synaptic Neurosci. 2018 Nov 22;10:42. doi: 10.3389/fnsyn.2018.00042. PMID: 30524263; PMCID: PMC6262052.

Guo C, Ma YY. Calcium Permeable-AMPA Receptors and Excitotoxicity in Neurological Disorders. Front Neural Circuits. 2021 Aug 17;15:711564. doi: 10.3389/fncir.2021.711564. PMID: 34483848; PMCID: PMC8416103.

Noh ASM, Chuan TD, Khir NAM, Zin AAM, Ghazali AK, Long I, Ab Aziz CB, Ismail CAN. Effects of different doses of complete Freund's adjuvant on nociceptive behaviour and inflammatory parameters in polyarthritic rat model mimicking rheumatoid arthritis. PLoS One. 2021 Dec 8;16(12):e0260423. doi: 10.1371/journal.pone.0260423. PMID: 34879087; PMCID: PMC8654228.

Wang Y, Wu J, Wu Z, Lin Q, Yue Y, Fang L. Regulation of AMPA receptors in spinal nociception. Mol Pain. 2010 Jan 21;6:5. doi: 10.1186/1744-8069-6-5. PMID: 20092646; PMCID: PMC2823608.

Park JS, Voitenko N, Petralia RS, Guan X, Xu JT, Steinberg JP, Takamiya K, Sotnik A, Kopach O, Huganir RL, Tao YX. Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci. 2009 Mar 11;29(10):3206-19. doi: 10.1523/JNEUROSCI.4514-08.2009. PMID: 19279258; PMCID: PMC2664544.

Kopach O, Dobropolska Y, Belan P, Voitenko N. Ca2+-Permeable AMPA Receptors Contribute to Changed Dorsal Horn Neuronal Firing and Inflammatory Pain. Int J Mol Sci. 2023 Jan 25;24(3):2341. doi: 10.3390/ijms24032341. PMID: 36768663; PMCID: PMC9916706.

Spicarova D, Palecek J. Modulation of AMPA excitatory postsynaptic currents in the spinal cord dorsal horn neurons by insulin. Neuroscience. 2010 Mar 10;166(1):305-11. doi: 10.1016/j.neuroscience.2009.12.007. Epub 2009 Dec 23. PMID: 20005924.

De Caro C, Cristiano C, Avagliano C, Cuozzo M, La Rana G, Aviello G, De Sarro G, Calignano A, Russo E, Russo R. Analgesic and Anti-Inflammatory Effects of Perampanel in Acute and Chronic Pain Models in Mice: Interaction With the Cannabinergic System. Front Pharmacol. 2021 Feb 1;11:620221. doi: 10.3389/fphar.2020.620221. PMID: 33597883; PMCID: PMC7883473.

El-Kouhen O, Lehto SG, Pan JB, Chang R, Baker SJ, Zhong C, Hollingsworth PR, Mikusa JP, Cronin EA, Chu KL, McGaraughty SP, Uchic ME, Miller LN, Rodell NM, Patel M, Bhatia P, Mezler M, Kolasa T, Zheng GZ, Fox GB, Stewart AO, Decker MW, Moreland RB, Brioni JD, Honore P. Blockade of mGluR1 receptor results in analgesia and disruption of motor and cognitive performances: effects of A-841720, a novel non-competitive mGluR1 receptor antagonist. Br J Pharmacol. 2006 Nov;149(6):761-74. doi: 10.1038/sj.bjp.0706877. Epub 2006 Oct 3. PMID: 17016515; PMCID: PMC2014656.

Wiltgen BJ, Royle GA, Gray EE, Abdipranoto A, Thangthaeng N, Jacobs N, Saab F, Tonegawa S, Heinemann SF, O'Dell TJ, Fanselow MS, Vissel B. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS One. 2010 Sep 29;5(9):e12818. doi: 10.1371/journal.pone.0012818. PMID: 20927382; PMCID: PMC2947514.

Gangadharan V, Wang R, Ulzhöfer B, Luo C, Bardoni R, Bali KK, Agarwal N, Tegeder I, Hildebrandt U, Nagy GG, Todd AJ, Ghirri A, Häussler A, Sprengel R, Seeburg PH, MacDermott AB, Lewin GR, Kuner R. Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice. J Clin Invest. 2011 Apr;121(4):1608-23. doi: 10.1172/JCI44911. Epub 2011 Mar 7. PMID: 21383497; PMCID: PMC3069784.

Harvey SC, Köster A, Yu H, Skolnick P, Baumbarger P, Nisenbaum ES. AMPA receptor function is altered in GLUR2-deficient mice. J Mol Neurosci. 2001 Aug;17(1):35-43. doi: 10.1385/JMN:17:1:35. PMID: 11665861.

Carr KD. Homeostatic regulation of reward via synaptic insertion of calcium-permeable AMPA receptors in nucleus accumbens. Physiol Behav. 2020 May 15;219:112850. doi: 10.1016/j.physbeh.2020.112850. Epub 2020 Feb 21. PMID: 32092445; PMCID: PMC7108974.

Polgár E, Watanabe M, Hartmann B, Grant SG, Todd AJ. Expression of AMPA receptor subunits at synapses in laminae I-III of the rodent spinal dorsal horn. Mol Pain. 2008 Jan 23;4:5. doi: 10.1186/1744-8069-4-5. PMID: 18215271; PMCID: PMC2248168.

Isaac JT, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007 Jun 21;54(6):859-71. doi: 10.1016/j.neuron.2007.06.001. PMID: 17582328.

Nakagawa T (2010). The biochemistry, ultrastructure, and subunit assembly mechanism of AMPA receptors. Mol Neurobiol 42, 161–184.

Isaac JT, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007 Jun 21;54(6):859-71. doi: 10.1016/j.neuron.2007.06.001. PMID: 17582328.

Helms, A.W., and Johnson, J.E. (2003). Specification of dorsal spinal cord interneurons. Curr. Opin. Neurobiol. 13, 42–49.

Lopes DM, Cater HL, Thakur M, Wells S, McMahon SB. A refinement to the formalin test in mice. F1000Res. 2019 Jun 20;8:891. doi: 10.12688/f1000research.18338.2. PMID: 31489182; PMCID: PMC6707399.

Malmberg AB, Yaksh TL (1992) Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther 263: 136–146.

ჩამოტვირთვები

გამოქვეყნებული

2024-07-10

როგორ უნდა ციტირება

აფხაზავა დ., სულაშვილი ნ., ეგნატიევი ი., გიორგობიანი მ., ნოზაძე მ., ვეკუა ნ., & ჯაფარიძე ნ. (2024). AMPA რეცეპტორის GluA1 ქვედანაყოფების ეგზოსომური წარმოქმნა თაგვებში და ანთებითი ტკივილის მოდულირება. სამეცნიერო ჟურნალი “სპექტრი” , 9(1). https://doi.org/10.52340/spectri.2024.09.01.05

გამოცემა

სექცია

Articles
Loading...