TYPES OF CELL DEATH AND THEIR EVALUATION IN DETERMINING THE VITALITY OF BONE FRACTURE

TYPES OF CELL DEATH AND THEIR EVALUATION IN DETERMINING THE VITALITY OF BONE FRACTURE

Authors

DOI:

https://doi.org/10.52340/jecm.2024.05.02

Keywords:

cell death, bone fracture, vitality, forensic medicine, apoptosis

Abstract

In forensic medicine, understanding cell death mechanisms is crucial for determining osteocyte viability and the timing of bone fractures. Differentiating between necrosis and apoptosis provides valuable insights into the cause of injury, while identifying mixed (hybrid) forms of cell death enhances the forensic analysis of bone fractures. Lysosome-dependent cell death and autolysis significantly impact post-mortem changes, influencing fracture hematoma characteristics and the process of determining fracture age.

This review summarizes current knowledge on cell death mechanisms and their forensic relevance. By examining the relationships between different forms of cell death, this article aims to improve the understanding of tissue responses to injury, which is essential for accurately determining the timing and vitality of bone fractures.

Downloads

Download data is not yet available.

References

Aits, S., & Jäättelä, M. (2013). Lysosomal cell death at a glance. Journal of Cell Science, 126(9), 1905–1912. https://doi.org/10.1242/jcs.091181

Berghe, T. Vanden, Vanlangenakker, N., Parthoens, E., Deckers, W., Devos, M., Festjens, N., Guerin, C. J., Brunk, U. T., Declercq, W., & Vandenabeele, P. (2010). Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death and Differentiation, 17(6), 922–930. https://doi.org/10.1038/cdd.2009.184

Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: Host cell death and inflammation. In Nature Reviews Microbiology (Vol. 7, Issue 2, pp. 99–109). https://doi.org/10.1038/nrmicro2070

Bosurgi, L., Manfredi, A. A., & Rovere-Querini, P. (2011). Macrophages in injured skeletal muscle: A perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. In Frontiers in Immunology (Vol. 2, Issue NOV). https://doi.org/10.3389/fimmu.2011.00062

Cahilog, Z., Zhao, H., Wu, L., Alam, A., Eguchi, S., Weng, H., & Ma, D. (2020). The Role of Neutrophil NETosis in Organ Injury: Novel Inflammatory Cell Death Mechanisms. In Inflammation (Vol. 43, Issue 6, pp. 2021–2032). Springer. https://doi.org/10.1007/s10753-020-01294-x

Cocariu, E., Mageriu, V., Stăniceanu, F., Bastian, A., Socoliuc, C., Zurac, S. (2016). Correlations Between the Autolytic Changes and Postmortem Interval in Refrigerated Cadavers. Romanian Journal of Internal Medicine = Revue Roumaine de Médecine Interne, 54(2), 105–112. https://doi.org/10.1515/rjim-2016-0012

D’Arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. In Cell Biology International (Vol. 43, Issue 6, pp. 582–592). Wiley-Blackwell Publishing Ltd. https://doi.org/10.1002/cbin.11137

Dhuriya, Y. K., & Sharma, D. (2018). Necroptosis: A regulated inflammatory mode of cell death. In Journal of Neuroinflammation (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s12974-018-1235-0

Elmore, S. A., Dixon, D., Hailey, J. R., Harada, T., Herbert, R. A., Maronpot, R. R., Nolte, T., Rehg, J. E., Rittinghausen, S., Rosol, T. J., Satoh, H., Vidal, J. D., Willard-Mack, C. L., & Creasy, D. M. (2016). Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicologic Pathology, 44(2), 173–188. https://doi.org/10.1177/0192623315625859

Formigli, L., Papucci, L., Tani, A., Schiavone, N., Tempestini, A., Orlandini, G. E., Capaccioli, S., & Zecchi Orlandini, S. (2000). Aponecrosis: Morphological and Biochemical Exploration of a Syncretic Process of Cell Death Sharing Apoptosis and Necrosis. In J. Cell. Physiol (Vol. 182).

Gad Paulis, M., & Mohamed Ali, D. (2018). Antemortem, Perimortem, and Postmortem Bone Fracture: Could Histopathology Differentiate Between? In Egypt J. Forensic Sci. Appli. Toxicol (Vol. 18, Issue 3).

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., Kroemer, G. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. In Cell Death and Differentiation (Vol. 25, Issue 3, pp. 486–541). Nature Publishing Group. https://doi.org/10.1038/s41418-017-0012-4

Guicciardi, M. E., Leist, M., & Gores, G. J. (2004). Lysosomes in cell death. In Oncogene (Vol. 23, Issue 16 REV. ISS. 2, pp. 2881–2890). https://doi.org/10.1038/sj.onc.1207512

Heilig, R., Dilucca, M., Boucher, D., Chen, K. W., Hancz, D., Demarco, B., Shkarina, K., & Broz, P. (2020). Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD. Life Science Alliance, 3(4). https://doi.org/10.26508/LSA.202000735

Henriquez, M., Armisén, R., Stutzin, A., & Quest, A. F. G. (2008). Cell Death by Necrosis, a Regulated Way to Go. In Current Molecular Medicine (Vol. 8).

Homeyer, A., Schenk, A., Arlt, J., Dahmen, U., Dirsch, O., & Hahn, H. K. (2013). Practical quantification of necrosis in histological whole-slide images. Computerized Medical Imaging and Graphics, 37(4), 313–322. https://doi.org/10.1016/j.compmedimag.2013.05.002

Huang, P., Chen, G., Jin, W., Mao, K., Wan, H., & He, Y. (2022). Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases. In International Journal of Molecular Sciences (Vol. 23, Issue 13). MDPI. https://doi.org/10.3390/ijms23137292

Jeong, S. Y., & Seol, D. W. (2008). The role of mitochondria in apoptosis. BMB reports, 41(1), 11–22. https://doi.org/10.5483/bmbrep.2008.41.1.011

Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256:42–9. https://doi.org/10.1006/excr.2000.4838.

Kaur, D., & Deshmukh, R. (2021). Physiology of cellular demise: Apoptosis, necrosis, and autophagy. Clinical Perspectives and Targeted Therapies in Apoptosis: Drug Discovery, Drug Delivery, and Disease Prevention, 23–78. https://doi.org/10.1016/B978-0-12-815762-6.00002-0

Khoury, M. K., Gupta, K., Fra nco, S. R., & Liu, B. (2020). Necroptosis in the Pathophysiology of Disease. In American Journal of Pathology (Vol. 190, Issue 2, pp. 272–285). Elsevier Inc. https://doi.org/10.1016/j.ajpath.2019.10.012

Kianfar, M., Balcerak, A., Chmielarczyk, M., Tarnowski, L., & Grzybowska, E. A. (2022). Cell Death by Entosis: Triggers, Molecular Mechanisms and Clinical Significance. In International Journal of Molecular Sciences (Vol. 23, Issue 9). MDPI. https://doi.org/10.3390/ijms23094985.

Kim, J. S., He, L., & Lemasters, J. J. (2003). Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochemical and Biophysical Research Communications, 304(3), 463–470. https://doi.org/10.1016/S0006-291X(03)00618-1

Kroemer, G., Galluzzi, L., Kepp, O., Zitvogel, L. (2013). Immunogenic cell death in cancer therapy. In Annual Review of Immunology (Vol. 31, pp. 51–72). https://doi.org/10.1146/annurev-immunol-032712-100008

Li, J., Cao, F., Yin, H. liang, Huang, Z. jian, Lin, Z. tao, Mao, N., Sun, B., & Wang, G. (2020). Ferroptosis: past, present and future. In Cell Death and Disease (Vol. 11, Issue 2). Springer Nature. https://doi.org/10.1038/s41419-020-2298-2

Lossi L. (2022). The concept of intrinsic versus extrinsic apoptosis. The Biochemical journal, 479(3), 357–384. https://doi.org/10.1042/BCJ20210854

Mahajan, A., Herrmann, M., & Muñoz, L. E. (2016). Clearance deficiency and cell death pathways: A model for the pathogenesis of SLE. In Frontiers in Immunology (Vol. 7, Issue FEB). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2016.00035

Nikoletopoulou, V., Markaki, M., Palikaras, K., & Tavernarakis, N. (2013). Crosstalk between apoptosis, necrosis and autophagy. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1833, Issue 12, pp. 3448–3459). https://doi.org/10.1016/j.bbamcr.2013.06.001

Oftadeh, R., Perez-Viloria, M., Villa-Camacho, J. C., Vaziri, A., & Nazarian, A. (2015). Biomechanics and Mechanobiology of Trabecular Bone: A Review. In Journal of Biomechanical Engineering (Vol. 137, Issue 1). American Society of Mechanical Engineers (ASME). https://doi.org/10.1115/1.4029176

Park, W., Wei, S., Kim, B. S., Kim, B., Bae, S. J., Chae, Y. C., Ryu, D., & Ha, K. T. (2023). Diversity and complexity of cell death: a historical review. In Experimental and Molecular Medicine (Vol. 55, Issue 8, pp. 1573–1594). Springer Nature. https://doi.org/10.1038/s12276-023-01078-x

Radi, Z. A., Stewart, Z. S., & O’Neil, S. P. (2018). Accidental and Programmed Cell Death in Investigative and Toxicologic Pathology. Current Protocols in Toxicology, 76(1). https://doi.org/10.1002/cptx.51

Ru, K., Swati, R. F., Zeng, H., Khan, Z., Chen, Z., Qian, A., & Hu, L. (2024). The whole bone mechanical properties and modeling study. In Bone Cell Biomechanics, Mechanobiology and Bone Diseases (pp. 53–94). Elsevier. https://doi.org/10.1016/b978-0-323-96123-3.00012-9

Sachet, M., Liang, Y. Y., & Oehler, R. (2017). The immune response to secondary necrotic cells. In Apoptosis (Vol. 22, Issue 10, pp. 1189–1204). Springer New York LLC. https://doi.org/10.1007/s10495-017-1413-z

Sciorati, C., Rigamonti, E., Manfredi, A. A., & Rovere-Querini, P. (2016). Cell death, clearance and immunity in the skeletal muscle. In Cell Death and Differentiation (Vol. 23, Issue 6, pp. 927–937). Nature Publishing Group. https://doi.org/10.1038/cdd.2015.171

Shen, S., Shao, Y., & Li, C. (2023). Different types of cell death and their shift in shaping disease. In Cell Death Discovery (Vol. 9, Issue 1). Springer Nature. https://doi.org/10.1038/s41420-023-01581-0

Shmulevich, R., & Krizhanovsky, V. (2021). Cell Senescence, DNA Damage, and Metabolism. In Antioxidants and Redox Signaling (Vol. 34, Issue 4, pp. 324–334). Mary Ann Liebert Inc. https://doi.org/10.1089/ars.2020.8043

Vasudevan, S. O., Behl, B., & Rathinam, V. A. (2023). Pyroptosis-induced inflammation and tissue damage. In Seminars in Immunology (Vol. 69). Academic Press. https://doi.org/10.1016/j.smim.2023.101781

Vitale, I., Galluzzi, L., Castedo, M., & Kroemer, G. (2011). Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Reviews. Molecular Cell Biology, 12(6), 385–392. https://doi.org/10.1038/nrm3115

Wang, F., Gómez-Sintes, R., & Boya, P. (2018). Lysosomal membrane permeabilization and cell death. In Traffic (Vol. 19, Issue 12, pp. 918–931). Blackwell Munksgaard. https://doi.org/10.1111/tra.12613

Wang, F., Salvati, A., & Boya, P. (2018). Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biology, 8(8). https://doi.org/10.1098/rsob.170271

Wescott, D. J. (2013). Biomechanics of Bone Trauma. In Encyclopedia of Forensic Sciences: Second Edition (pp. 83–88). Elsevier Inc. https://doi.org/10.1016/B978-0-12-382165-2.000155

Yan, G., Elbadawi, M., & Efferth, T. (2020). Multiple cell death modalities and their key features (Review). In World Academy of Sciences Journal (Vol. 2, Issue 2, pp. 39–48).

Yang, Y., Jiang, G., Zhang, P., & Fan, J. (2015). Programmed cell death and its role in inflammation. In Military Medical Research (Vol. 2, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40779-015-0039-0

Downloads

Published

2024-09-15

How to Cite

GONASHVILI, M., KILASONIA, B., CHIKHLADZE, R., MOSIDZE, K., & BERIASHVILI, R. (2024). TYPES OF CELL DEATH AND THEIR EVALUATION IN DETERMINING THE VITALITY OF BONE FRACTURE. Experimental and Clinical Medicine Georgia, (5), 11–23. https://doi.org/10.52340/jecm.2024.05.02

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...