Integrating Geo-Health and Thalassotherapy Data: A GIS-Based Model for the Black Sea Region
DOI:
https://doi.org/10.52340/ijch.2025.02.03საკვანძო სიტყვები:
Thalassotherapy, Geo-Health, GIS-based mapping, Biochemical indicators, Peloids, Blue Health, Black Sea region, Metadata standardization, Preventive medicine, Sustainable coastal developmentანოტაცია
The Black Sea region, encompassing Bulgaria, Romania, Ukraine, Georgia, and Turkey, contains a unique diversity of marine therapeutic resources — mineralized seawater, peloids, marine aerosols, and coastal microclimates. However, these resources have historically been studied in isolation, without a unified spatial or analytical framework. This study presents a conceptual model for a Geo-Health System integrating GIS-based environmental mapping, biochemical and clinical datasets, and standardized geo-metadata to strengthen preventive medicine, spa management, and sustainable coastal development. Three interrelated components were developed:
- Thalassotherapy GIS Map – spatial delineation of key therapeutic zones (Pomorie, Techirghiol, Kuyalnik, Balchik Tuzla, Anaklia–Ureki–Grigoleti, Sinop–Rize).
- Geo-Health Indicators Dashboard – integration of environmental and clinical data through composite indices (HCI, PBI, CCI, TES).
- Standardized Geo-Metadata Framework – ensuring data interoperability according to INSPIRE Directive and ISO 19115/19139 standards.
Together, these tools offer a foundation for a regional Geo-Health database, promoting evidence-based thalassotherapy, digital transformation, and transnational cooperation in the Blue Health context (Gushcha et al., 2023).
##plugins.generic.usageStats.downloads##
წყაროები
Babov, K., Arabadji, M., Koieva, K., Nikolenko, S., Kysylevska, A., Tsurkan, O., & Plakida, A. (2023). Dynamics of physicochemical and microbiological parameters of peloids of the Kuyalnitsky Estuary under the influence of the Black Sea’s water. Arabian Journal of Geosciences, 16(56). https://doi.org/10.1007/s12517-022-11066-6
Doncheva, V. G., Hristova, O. D., Dzhurova, B. S., & Slavova, K. R. (2020). Metal pollution assessment in sediments of the Bulgarian Black Sea coastal zone. Ecologia Balkanica, 12(1), 179–189.
European Environment Agency. (n.d.). Copernicus Marine Service Data. https://marine.copernicus.eu
Gushcha, S. G., Nasibullin, B. A., Koeva, K. A., Arabadji, M. V., Badiuk, N. S., & Kysylevska, A. Y. (2021). Long-term studies of the chemical composition and biological activity of silt-sulfide peloids of the Kuyalnitsky Estuary. PharmacologyOnLine, 2, 753–760. https://pharmacologyonline.silae.it/files/archives/2021/vol2/PhOL_2021_2_A085_Gushcha.pdf
INSPIRE Directive. (2007). Directive 2007/2/EC of the European Parliament and of the Council establishing an Infrastructure for Spatial Information in the European Community.
International Organization for Standardization. (2014). ISO 19115: Geographic information — Metadata. Geneva, Switzerland.
International Organization for Standardization. (2019). ISO 19139: Geographic information — XML schema implementation. Geneva, Switzerland.
International Organization for Standardization/International Electrotechnical Commission. (2019). ISO/IEC 17025: General requirements for testing and calibration laboratories. Geneva, Switzerland.
Nonova, T., Strezov, A., Dobrev, L., & Slavova, K. (2023). Radionuclides and potentially toxic elements in sediments from the northern Bulgarian Black Sea coast. Comptes rendus de l’Académie bulgare des Sciences, 76(3), 359–367. https://doi.org/10.7546/CRABS.2023.03.04
Prodanov, B., Gussev, C., Sopotlieva, D., Valcheva, M., Bekova, R., Baltakova, A., Tzonev, R., & Popov, J. (2025). A standard procedure for dune mapping along the Bulgarian Black Sea coast: An integrated approach combining UAS photogrammetry, geomorphological and phytocoenological surveys. Frontiers in Marine Science, 12(Coastal Ocean Processes). https://doi.org/10.3389/fmars.2025.1579724
Solodyankina, S., & Koeppel, J. (2009). The environmental impact assessment process for oil and gas extraction projects in the Russian Federation: Possibilities for improvement. Impact Assessment and Project Appraisal, 27(1), 77–83.
Solodyankina, S. V., Vanteeva, Y. V., & Istomina, E. A. (2012). Landscape mapping of the northeastern shore of Lake Baikal and its sustainability under recreational activity development. Geodesy and Cartography, 12, 34–41.
Solodyankina, S. V., Vanteeva, Y. V., Cherkashina, A. A., & Chepinoga, V. V. (2018). Classification and mapping of topogeosystems by the method of factorial-dynamical series of facies. Geography and Natural Resources, 39(3), 261–269. https://doi.org/10.1134/S1875372818030101
Tuchkovenko, Y. S., Garkusha, O. P., Grib, O. M., Gushcha, S. G., Denga, Y. M., Kalashnik, K. S., Koeva, H. O., Komorin, V. M., Koshelev, O. V., Minicheva, G. G., Loboda, N. S., & Pogrebnoy, A. L. (2022). Results of hydrological, hydrochemical, hydrobiological, and medical-biological surveys of the Kuyalnitsky Estuary. Ukrainian Hydrometeorological Journal, 30, 40–64. https://doi.org/10.31481/uhmj.30.2022.04
Vanteeva, J. V., & Solodyankina, S. V. (2015). Ecosystem functions of steppe landscapes near Lake Baikal. Hacquetia, 14(1), 65–78.
Vinkovic, A., Laptyev, G., Yaprak, G., Slavova, K., Joksimovic, D., Troskot-Corbic, T., Frontasyeva, M., Duliu, O. G., Bylyku, E., Shyti, M., Humbatov, F., Nuhanovic, M., Smjecanin, N., Nonova, T., Dobrev, L., Pashalidis, I., Melikadze, G., Ioannidou, A., ... Obhodas, J. (2022). Could atmospheric carbon be driving sedimentation? Journal of Soils and Sediments, 22(11), 2912–2928. https://doi.org/10.1007/s11368-022-03282-0
Zlateva, I., Ricker, M., Slabakova, V., Slavova, K., Doncheva, V., Staneva, J., Stanev, E., Popov, I., Gramcianinov, C., & Raykov, V. (2024). Analysis of terrestrial and riverine sources of plastic litter contributing to plastic pollution in the Western Black Sea using a Lagrangian particle tracking model. Marine Pollution Bulletin, 187, 117108. https://doi.org/10.1016/j.marpolbul.2024.117108
