Can Au/Ag/Fe nanoparticle composition restore blood cell counts in terms of DMH-induced colon adenocarcinoma?

Authors

  • Nataliya Lisnychuk
  • Svitlana Dybkova
  • Liudmyla Rieznichenko
  • Zoriana Vivchar

DOI:

https://doi.org/10.52340/mid.2021.638

Keywords:

Experimental carcinogenesis, nanoparticles, blood cell count, rat

Abstract

Scientific interest in nanomedicine nowadays is constantly growing, and nanomaterials have found wide application in diagnosis and treatment of various diseases. The most promising seem to be metal nanoparticles (NP). Some of them are actively studied in separate and there are favorable results considering their ability to normalize blood cell counts, but their co-work as a composite is still not well known. This opens a great perspective for studying NP as the blood homeostasis corrector, which could help in developing treatment schemes for many threatening diseases followed by the blood cell count disorders, especially malignant tumors. As colorectal cancer is third most commonly diagnosed, this study was focused on evaluation of blood cell counts changes in rats with DMH-induced colon adenocarcinoma in situ along with the assessment of Au/Ag/Fe NP composition corrective effect. Colon adenocarcinoma was induced by introducing N,N-dimethylhydrazine hydrochloride during 30 weeks. After pathohistological verification of developing colon adenocarcinoma in situ in DMH-treated rats Au/Ag/Fe NP composition was administered during 3 weeks. Introducing NP to the DMH-injured rats lead to increasing RBC and HGB and decreasing pathologically high-leveled MCV, MCH and MCHC to normal references. Assessed NP composition normalized the neutrophils rate, LMR and gave us a PLT rate particularly the same, as in the control group animals. Taking into account the previously proven biosafety of gold, silver and iron NP on their own and as a result the predicted biosafety of their composition we can consider further amplification of preclinical study on this NP composition of high significance, as it might be possibly used as following therapy of non-metastatic forms of colon cancer.

Downloads

Download data is not yet available.

References

Wang L, O'Donoghue MB, Tan W. NP for multiplex diagnostics and imaging. Nanomedicine (Lond). 2006;1(4):413-426. doi:10.2217/17435889.1.4.413.

Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng.2007;9(1):257–288.doi: 10.1146/annurev.bioeng.9.060906.152025.

Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. NP: pharmacological and toxicological significance. Br J Pharmacol. 2007;150(5):552-558. doi:10.1038/sj.bjp.0707130

Ulberg ZR, Gruzina TG, Dybkova SM, Rieznichenko LS. The Biosafe of Metals’ NP in Nanomedicine and Nanobiotecnology. Bulletin of problems in Biology and Medicine. 2010;4:72-77.

Sahoo SK, Parveen S, Panda JJ. The present and future of nanotechnology in human health care. Nanomedicine. 2007;3(1):20-31. doi:10.1016/j.nano.2006.11.008.

Chen PC, Mwakwari SC, Oyelere AK. Gold NP: From nanomedicine to nanosensing. Nanotechnol Sci Appl. 2008;1:45-65. Published 2008 Nov 2. doi:10.2147/nsa.s3707.

Bawa R. Nanoparticle-based therapeutics in humans: a survey. Nanotech. L. & Bus. 2008;5:135-155.

West JL, Halas NJ. Applications of nanotechnology to biotechnology commentary. Curr Opin Biotechnol. 2000;11(2):215-217. doi:10.1016/s0958-1669(00)00082-3.

Aslan K, Lakowicz JR, Geddes CD. Nanogold-plasmon-resonance-based glucose sensing. Anal Biochem. 2004;330(1):145-155. doi:10.1016/j.ab.2004.03.032.

Letfullin RR, Joenathan C, George TF, Zharov VP. Laser-induced explosion of gold NP: potential role for nano photothermolysis of cancer. Nanomedicine (Lond). 2006;1(4):473-480. doi:10.2217/17435889.1.4.473.

Chah S, Hammond MR, Zare RN. Gold NP as a colorimetric sensor for protein conformational changes. Chem Biol. 2005;12(3):323-328. doi:10.1016/j.chembiol.2005.01.013.

Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold NP. Proc Natl Acad Sci USA. 2004;101(39):14036-14039. doi:10.1073/pnas.0406115101.

Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM. GoldNP: a new X-raycontrastagent. Br J Radiol. 2006;79(939):248-253. doi:10.1259/bjr/13169882.

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold NP are taken up by human cells but do not cause acute cytotoxicity. Small.2005;1(3):325-327. doi:10.1002/smll.200400093.

Xu C, Tung GA, Sun S. Size and Concentration Effect of Gold NP on X-ray Attenuation As Measured on Computed Tomography. Chem Mater. 2008;20(13):4167-4169. doi:10.1021/cm8008418.

Jahnen-Dechent W, Simon U. Function follows form: shape complementarity and nanoparticle toxicity. Nanomedicine (Lond). 2008;3(5):601-603. doi:10.2217/17435889.3.5.601.

Hu J, Wang Z, Li J. Gold NP With Special Shapes: Controlled Synthesis, Surface-enhanced Raman Scattering, and The Application in Biodetection. Sensors (Basel). 2007;7(12):3299-3311. Published 2007 Dec 14. doi:10.3390/s7123299.

Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.Small. 2009;5(6):701-708. doi:10.1002/smll.200801546.

Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587-1595. doi:10.1021/ar800018v.

Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11(3):169-183. doi:10.1080/10717540490433895.

Chen YH, Tsai CY, Huang PY, et al. Methotrexate conjugated to gold NP inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713-722. doi:10.1021/mp060132k.

Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold NP. Trends Biotechnol. 2006;24(2):62-67. doi:10.1016/j.tibtech.2005.12.004.

Cardinal J, Klune JR, Chory E, et al. Noninvasive radiofrequency ablation of cancer targeted by gold NP. Surgery. 2008;144(2):125-132. doi:10.1016/j.surg.2008.03.036.

Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115-2120. doi:10.1021/ja057254a.

Alric C, Serduc R, Mandon C, et al. Gold NP designed for combining dual modality imaging and radiotherapy. Gold Bulletin. 2008;41(2):90–97. https://doi.org/10.1007/BF03216586.

Kah JC, Kho KW, Lee CG, et al. Early diagnosis of oral cancer based on the surface plasmon resonance of gold NP. Int J Nanomedicine. 2007;2(4):785-798.

Rieznichenko LS, Dybkova SM, Gruzina TG, et al. Gold NP synthesis and biological activity estimation in vitro and in vivo. Exp Oncol. 2012;34(1):25-28.

Garcés V, Rodríguez-Nogales A, González A, etal. Bacteria-Carried Iron Oxide

NP for Treatment of Anemia. Bioconjug Chem. 2018;29(5):1785-1791. doi:10.1021/acs.bioconjchem.8b00245.

Rieznichenko LS, Doroshenko AM. Safety assessment of the iron NP – a substance with antianemic properties – under the oral administration to rats. Veterinary biotechnology. 2020;37:63-75. https://doi.org/10.31073/vet_biotech37-07.

Gaharwar US, Meena R, Rajamani P. Biodistribution, Clearance And Morphological Alterations Of Intravenously Administered Iron Oxide NP In Male Wistar Rats. Int J Nanomedicine. 2019;14:9677-9692 https://doi.org/10.2147/IJN.S223142.

Coffelt SB, Wellenstein MD, deVisser KE. Neutrophils in cancer: neutral no more. Nat Rev Cancer. 2016;16(7):431-446. doi:10.1038/nrc.2016.52.

Hu X, Li YQ, Li QG, Ma YL, Peng JJ, Cai SJ. Baseline Peripheral Blood Leukocytosis Is Negatively Correlated With T-Cell Infiltration Predicting Worse Outcome in Colorectal Cancers. Front Immunol. 2018;9:2354. doi:10.3389/fimmu.2018.02354.

Council of Europe Treaty Series – Explanatory Reports . European convention for the

protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe. Strasbourg; 1986.

Rytsyk O, Soroka Y, Shepet I, et al. Experimental Evaluation of the Effectiveness of Resveratrol as an Antioxidant in Colon Cancer Prevention. Natural Product Communications. June 2020. doi:10.1177/1934578X20932742.

Campregher C, Luciani MG, Gasche C. Activated neutrophils induce an hMSH2-dependent G2/M checkpoint arrest and replication error sat a (CA)13-repeat in colon epithelial cells. Gut. 2008;57(6):780-787. doi:10.1136/gut.2007.141556.

Mizuno H, Yuasa N, Takeuchi E, et al. Blood cell markers that can predict the long-term outcomes of patients with colorectal cancer. PLoS One. 2019;14(8):e0220579. Published 2019 Aug 1. doi:10.1371/journal.pone.0220579.

Zheng YZ, Dai SQ, Li W, et al. Prognostic value of preoperative mean corpuscular volume in esophageal squamous cell carcinoma. World J Gastroenterol. 2013;19(18):2811-2817. doi:10.3748/wjg.v19.i18.2811.

Nagai H, Yuasa N, Takeuchi E, Miyake H, Yoshioka Y, Miyata K. The mean corpuscular volume as a prognostic factor for colorectal cancer. Surg Today. 2018;48:186–194. doi:10.1007/s00595-017-1575-x.

Schneider C, Bodmer M, Jick SS, Meier CR. Colorectal cancer and markers of anemia. Eur J Cancer Prev. 2018;27:530–538. doi:10.1097/CEJ.0000000000000397.

Solak Y, Yilmaz MI, Saglam M, et al. Mean corpuscular volume is associated with endothelial dysfunction and predicts composite cardiovascular events in patients with chronic kidney disease. Nephrology (Carlton, Vic.). 2013;18:728–735.

Väyrynen JP, Tuomisto A, Väyrynen SA, Klintrup K, Karhu T, Mäkelä J, et al. Preoperative anemia in colorectal cancer: relationships with tumor characteristics, systemic inflammation, and survival. Sci Rep .2018;8:1126 doi:10.1038/s41598-018-19572-y.

Ueda T, Kawakami R, Horii M, et al. High mean corpuscular volume is a new indicator of prognosis in acute decompensated heart failure. Circ J. 2013;77(11):2766-2771. doi:10.1253/circj.cj-13-0718.

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140: 883–899. doi:10.1016/j.cell.2010.01.025.

Lin EY, Pollard JW. Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer. 2004;90:2053–2058. doi:10.1038/sj.bjc.6601705.

Song Y, Yang Y, Gao P, et al. The preoperative neutrophil to lymphocyte ratio is a superior indicator of prognosis compared with other inflammatory biomarkers in resectable colorectal cancer. BMC Cancer. 2017;17:744. doi:10.1186/s12885-017-3752-0.

He W, Yin C, Guo G, et al. Initial neutrophil lymphocyte ratio is superior to platelet lymphocyte ratio as an adverse prognostic and predictive factor in metastatic colorectal cancer. Med Oncol. 2013;30:439. doi:10.1007/s12032-012-0439-x.

Li MX, Liu XM, Zhang XF, et al. Prognostic role of neutrophil-to-lymphocyte ratio in colorectal cancer: a systematic review and meta-analysis. Int J Cancer. 2014;134:2403–2413. doi:10.1002/ijc.28536.

Pine JK, Morris E, Hutchins GG, et al. Systemic neutrophil-to-lymphocyte ratio in colorectal cancer: the relationship to patient survival, tumour biology and local lymphocytic response to tumour. Br J Cancer. 2015;113(2):204-211. Doi:10.1038/bjc.2015. 87.

Haram A, Boland MR, Kelly ME, Bolger JC, Waldron RM, Kerin MJ. The prognostic value of neutrophil-to-lymphocyte ratio in colorectal cancer: A systematic review. J Surg Oncol. 2017;115(4):470-479. doi:10.1002/jso.24523.

Han F, Shang X, Wan F, et al. Clinical value of the preoperative neutrophil-to-lymphocyte ratio and red blood cell distribution width in patients with colorectal carcinoma. Oncol Lett. 2018;15:3339–3349. doi:10.3892/ol.2017.7697.

Chan JC, Chan DL, Diakos CI, et al. The Lymphocyte-to-Monocyte Ratio is a Superior Predictor of Overall Survival in Comparison to Established Biomarkers of Resectable Colorectal Cancer. AnnSurg. 2017;265(3):539-546. doi:10.1097/SLA.0000000000001743.

Shibutani M, Maeda K, Nagahara H, Iseki Y, Ikeya T, Hirakawa K. Prognostic significance of the preoperative lymphocyte-to-monocyte ratio in patients with colorectal cancer. Oncol Lett. 2017;13(2):1000-1006. doi:10.3892/ol.2016.5487.

Downloads

Published

2021-11-16

Issue

Section

Articles