Nanotechnology Based Drug Delivery and Marine Diet Derived Compounds in Alpha-Synuclein-Linked Parkinson’s Disease
pdf (English)

როგორ უნდა ციტირება

Sathasivan, S., Annamalai, J., Bathcha, S. K. S., & Annamalai, J. (2025). Nanotechnology Based Drug Delivery and Marine Diet Derived Compounds in Alpha-Synuclein-Linked Parkinson’s Disease. ახალგაზრდა მკვლევარები, 3(2), 212–226. https://doi.org/10.52340/jr.2025.03.02.29

ანოტაცია

Introduction

Parkinson’s disease is a neurodegenerative disease characterized by reduced dopamine release due to neuronal apoptosis and alpha-synuclein aggregation due to mutation, misfolded proteins and oxidative stress. The current therapeutic approach involves deep brain stimulation and usage of dopamine replacement drugs. The major challenges faced by the current treatment modalities include the reduced permeability of BBB and reduced bioavailability. Emerging Nanotechnology based drug delivery system offers novel strategies for drug delivery, decreased alpha-synuclein aggregation and increased drug absorption. This complemented with a diet rich in marine products, is found to manage depression symptoms in PD patients. Here, we provide a concise overview of these emerging modalities, summarizing their pre-clinical and clinical progress, delivery and safety challenges.

Methods

A literature review of papers from 2019 to 2025 with a targeted approach towards keywords such as ‘Nanotechnology’, ‘innovations in Parkinson’s’, ‘alpha-synuclein’ through platforms such as pubmed, google scholar, science direct, frontiers to investigate the effect of nanotechnology in Parkinson disease patients

Results

Emerging nanocarriers such as metal nanoparticles, graphene quantum dots and cerium oxide NPs proposed the possibility to break down α-synuclein fibrils, decrease mitochondrial damage, and restore synaptic function in PD models with low toxicity. Lipid-based formulations such as SLNs and APP-targeted liposomes enabled controlled, sustained release of dopamine, improving motor outcomes. Intranasal delivery of nanoemulsified anti-inflammatory agents like ibuprofen showed improved CNS bioavailability and neuroprotection in MPTP mouse models. Novel brain-penetrating nanoparticles combined with MR-guided focused ultrasound achieved long-lasting GDNF expression, leading to neuron preservation and motor symptom reversal. Nanomaterial-based sensor arrays achieved up to 84% precision in distinguishing PD patients from controls via breath analysis. Out of 29 patients who received marine metabolite diet in a 12-week trial, all of them were relieved from depressive symptoms in PD.

Conclusion

Nanotechnology presents an innovative, targeted management of Parkinson's disease (PD) with enhanced drug delivery, reduced oxidative stress, and potentially different disease modification.  Preclinical studies hold hope with antioxidant nanoparticles stopping alpha-synuclein fibril development. Such advancements prioritizing nanomedicine's therapeutic applications and regenerative options are facing challenges with regard to long-term safety, bioavailability, and mass commercial manufacture. Progressing pathways target nano-bio interaction optimization and augmentation of therapy by lifestyle measures paving the way for personalized disease-modifying PD treatment.

https://doi.org/10.52340/jr.2025.03.02.29
pdf (English)

წყაროები

Bridi, J. C., & Hirth, F. (2018). Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson’s Disease. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00080

Perez-Pardo, P., Kliest, T., Dodiya, H. B., Broersen, L. M., Garssen, J., Keshavarzian, A., & Kraneveld, A. D. (2017). The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies. European Journal of Pharmacology, 817, 86–95. https://doi.org/10.1016/j.ejphar.2017.05.042

Malec-Litwinowicz, M., Plewka, A., Plewka, D., Bogunia, E., Morek, M., Szczudlik, A., Szubiga, M., & Rudzińska-Bar, M. (2018). The relation between plasma α-synuclein level and clinical symptoms or signs of Parkinson’s disease. Neurologia I Neurochirurgia Polska, 52(2), 243–251. https://doi.org/10.1016/j.pjnns.2017.11.009

Chen, C., Duan, Z., Yuan, Y., Li, R., Pang, L., Liang, J., Xu, X., & Wang, J. (2017). Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. 9(7), 5864–5873. https://doi.org/10.1021/acsami.6b15831

Ghazy, E., Rahdar, A., Barani, M., & Kyzas, G. Z. (2021). Nanomaterials for Parkinson disease: Recent progress. Journal of Molecular Structure, 1231, 129698. https://doi.org/10.1016/j.molstruc.2020.129698

Baggett, D., Olson, A., & Parmar, M. S. (2024). Novel Approaches Targeting in α-Synuclein for Parkinson’s Disease: Current Progress and Future Directions for the Disease-Modifying Therapies. Brain Disorders, 16, 100163–100163. https://doi.org/10.1016/j.dscb.2024.100163

Sharma, S., Rabbani, S. A., Agarwal, T., Baboota, S., Pottoo, F. H., & Kadian, R. (2020). Nanotechnology driven approaches for the management of Parkinson’s disease: Current status and future perspectives. Current Drug Metabolism, 21. https://doi.org/10.2174/1389200221666201124123405

Ngowi, E. E., Wang, Y.-Z., Qian, L., Helmy, Y. A. S. H., Anyomi, B., Li, T., Zheng, M., Jiang, E.-S., Duan, S.-F., Wei, J.-S., Wu, D.-D., & Ji, X.-Y. (2021). The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.629832

Huang, C., Zhang, Z., & Cui, W. (2019). Marine-Derived Natural Compounds for the Treatment of Parkinson’s Disease. Marine Drugs, 17(4), 221. https://doi.org/10.3390/md17040221

Binda, C., Hubálek, F., Li, M., Herzig, Y., Sterling, J., Edmondson, D. E., & Mattevi, A. (2004). Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of the N-Propargylaminoindan Class. Journal of Medicinal Chemistry, 47(7), 1767–1774. https://doi.org/10.1021/jm031087c

Nagatsu, T., & Sawada, M. (2006). Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells. Journal of Neural Transmission. Supplementum, 71(71), 53–65. https://doi.org/10.1007/978-3-211-33328-0_7

O′Keeffe, G., Sullivan, A., & Hegarty, S. (2014). Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson′s disease. Neural Regeneration Research, 9(19), 1708. https://doi.org/10.4103/1673-5374.143410

Bourque, M.-J., & Trudeau, L.-E. (2000). GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. European Journal of Neuroscience, 12(9), 3172–3180. https://doi.org/10.1046/j.1460-9568.2000.00219.x

Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145–160. https://doi.org/10.1038/nrd1632

Esposito, E., Fantin, M., Marti, M., Drechsler, M., Paccamiccio, L., Mariani, P., Sivieri, E., Lain, F., Menegatti, E., Morari, M., & Cortesi, R. (2008). Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine. Pharmaceutical Research, 25(7), 1521–1530. https://doi.org/10.1007/s11095-007-9514-y

Mishra, V., Bansal, K., Verma, A., Yadav, N., Thakur, S., Sudhakar, K., & Rosenholm, J. (2018). Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics, 10(4), 191. https://doi.org/10.3390/pharmaceutics10040191

L. Shinde, R., B. Jindal, A., & V. Devarajan, P. (2011). Microemulsions and Nanoemulsions for Targeted Drug Delivery to the Brain. Current Nanoscience, 7(1), 119–133. https://doi.org/10.2174/157341311794480282

Karami, Z., Saghatchi Zanjani, M. R., & Hamidi, M. (2019). Nanoemulsions in CNS drug delivery: recent developments, impacts and challenges. Drug Discovery Today, 24(5), 1104–1115. https://doi.org/10.1016/j.drudis.2019.03.021

Bonferoni, M. C., Rossi, S., Sandri, G., Ferrari, F., Gavini, E., Rassu, G., & Giunchedi, P. (2019). Nanoemulsions for “Nose-to-Brain” Drug Delivery. Pharmaceutics, 11(2). https://doi.org/10.3390/pharmaceutics11020084

Mandal, S., Das Mandal, S., Chuttani, K., Sawant, K. K., & Subudhi, B. B. (2015b). Neuroprotective effect of ibuprofen by intranasal application of mucoadhesive nanoemulsion in MPTP induced Parkinson model. Journal of Pharmaceutical Investigation, 46(1), 41–53. https://doi.org/10.1007/s40005-015-0212-1

Ruotolo, R., De Giorgio, G., Minato, I., Bianchi, M., Bussolati, O., & Marmiroli, N. (2020). Cerium Oxide Nanoparticles Rescue α-Synuclein-Induced Toxicity in a Yeast Model of Parkinson’s Disease. Nanomaterials, 10(2), 235. https://doi.org/10.3390/nano10020235

Sela, M., Poley, M., Mora-Raimundo, P., Kagan, S., Aviram Avital, Kaduri, M., Chen, G., Adir, O., Adi Rozencweig, Weiss, Y., Sade, O., Leichtmann-Bardoogo, Y., Lilach Simchi, Shlomit Age-Mizrachi, Bell, B., Yoel Yeretz-Peretz, Or, A., Choudhary, A., Rosh, I., & Cordeiro, D. (2023). Brain‐Targeted Liposomes Loaded with Monoclonal Antibodies Reduce Alpha‐Synuclein Aggregation and Improve Behavioral Symptoms of Parkinson’s Disease. Advanced Materials. https://doi.org/10.1002/adma.202304654

Gao, G., Chen, R., He, M., Li, J., Li, J., Wang, L., & Sun, T. (2019). Gold nanoclusters for Parkinson’s disease treatment. Biomaterials, 194, 36–46. https://doi.org/10.1016/j.biomaterials.2018.12.013

Kim, D., Yoo, J. M., Hwang, H., Lee, J., Lee, S. H., Yun, S. P., Park, M. J., Lee, M., Choi, S., Kwon, S. H., Lee, S., Kwon, S.-H., Kim, S., Park, Y. J., Kinoshita, M., Lee, Y.-H., Shin, S., Paik, S. R., Lee, S. J., & Lee, S. (2018). Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nature Nanotechnology, 13(9), 812–818. https://doi.org/10.1038/s41565-018-0179-y

Bi, C., Wang, A., Chu, Y., Liu, S., Mu, H., Liu, W., Wu, Z., Sun, K., & Li, Y. (2016c). Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. International Journal of Nanomedicine, Volume 11, 6547–6559. https://doi.org/10.2147/ijn.s120939

Finberg, J. P. M., Schwartz, M., Jeries, R., Badarny, S., Nakhleh, M. K., Abu Daoud, E., Ayubkhanov, Y., Aboud-Hawa, M., Broza, Y. Y., & Haick, H. (2018). Sensor Array for Detection of Early Stage Parkinson’s Disease before Medication. ACS Chemical Neuroscience, 9(11), 2548–2553. https://doi.org/10.1021/acschemneuro.8b00245

da Silva, T. M., Munhoz, R. P., Alvarez, C., Naliwaiko, K., Kiss, Á., Andreatini, R., & Ferraz, A. C. (2008). Depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. Journal of Affective Disorders, 111(2-3), 351–359. https://doi.org/10.1016/j.jad.2008.03.008

Taghizadeh, M., Tamtaji, O. R., Dadgostar, E., Daneshvar Kakhaki, R., Bahmani, F., Abolhassani, J., Aarabi, M. H., Kouchaki, E., Memarzadeh, M. R., & Asemi, Z. (2017). The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Neurochemistry International, 108, 183–189. https://doi.org/10.1016/j.neuint.2017.03.014

1. J. Lingayat, Vishal, S. Zarekar, Nilesh, & Rajan, S. S. (2017). Solid Lipid Nanoparticles: A Review. Nanoscience and Nanotechnology Research, 4(2), 67–72. http://pubs.sciepub.com/

Kingwell, K. (2016). New targets for drug delivery across the BBB. Nature Reviews Drug Discovery, 15(2), 84–85. https://doi.org/10.1038/nrd.2016.14

Yarjanli, Z., Ghaedi, K., Esmaeili, A., Rahgozar, S., & Zarrabi, A. (2017). Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience, 18(1). https://doi.org/10.1186/s12868-017-0369-9

Li, A., Tyson, J., Patel, S., Patel, M., Katakam, S., Mao, X., & He, W. (2021). Emerging Nanotechnology for Treatment of Alzheimer’s and Parkinson’s Disease. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.672594

Krsek, A., & Baticic, L. (2024). Nanotechnology-Driven Therapeutic Innovations in Neurodegenerative Disorders: A Focus on Alzheimer’s and Parkinson’s Disease. Future Pharmacology, 4(2), 352–379. https://doi.org/10.3390/futurepharmacol4020020

Xiao, S., Chan, P., Wang, T., Hong, Z., Wang, S., Kuang, W., He, J., Pan, X., Zhou, Y., Ji, Y., Wang, L., Cheng, Y., Peng, Y., Ye, Q., Wang, X., Wu, Y., Qu, Q., Chen, S., Li, S., & Chen, W. (2021). A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimer’s Research & Therapy, 13(1). https://doi.org/10.1186/s13195-021-00795-7

Batool, S., Sohail, S., ud Din, F., Alamri, A. H., Alqahtani, A. S., Alshahrani, M. A., Alshehri, M. A., & Choi, H. G. (2023). A detailed insight of the tumor targeting using nanocarrier drug delivery system. Drug Delivery, 30(1). https://doi.org/10.1080/10717544.2023.2183815

Jagaran, K., & Singh, M. (2021). Nanomedicine for Neurodegenerative Disorders: Focus on Alzheimer’s and Parkinson’s Diseases. International Journal of Molecular Sciences, 22(16), 9082. https://doi.org/10.3390/ijms22169082

Loftus, J. R., Puri, S., & Meyers, S. P. (2023). Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights into Imaging, 14(1). https://doi.org/10.1186/s13244-022-01358-6

Downloads

Download data is not yet available.