ანოტაცია
Parkinson’s Disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuron loss in the substantia nigra pars compacta and α-synuclein aggregation. Growing evidence identifies mitochondrial dysfunction as a central driver of PD pathogenesis (1-3), linking genetic mutations, oxidative stress, environmental toxins, and lysosomal impairment. This review summarizes major mitochondrial abnormalities-complex I deficiency, mtDNA damage, disrupted dynamics, defective mitophagy, and impaired mitochondria - lysosome crosstalk (1,4). The roles of PD-related genes (PINK1, Parkin, LRRK2, GBA1, DJ-1, VPS35) and environmental toxins (MPTP, rotenone, paraquat) (5-7) are discussed, along with therapeutic strategies including antioxidants, mitophagy enhancers, gene therapy, and lifestyle interventions. Understanding mitochondrial mechanisms provides a foundation for precision, disease-modifying therapies.
წყაროები
(1) Bose, A., & Beal, M. F. (2016). Mitochondrial dysfunction in Parkinson’s disease. Journal of Neurochemistry, 139(1), 216–231. https://doi.org/10.1111/jnc.13731 (2) Exner, N., Lutz, A. K., Haass, C., & Winklhofer, K. F. (2012). Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences. The EMBO Journal, 31(14), 3038–3062. https://doi.org/10.1038/emboj.2012.170
(3) Grünewald, A., Kumar Krishnan, K. J., & Turnbull, D. M. (2019). Mitochondrial dysfunction in Parkinson's disease: A pathophysiological link to clinical features. Movement Disorders, 34(9), 1347–1356. https://doi.org/10.1002/mds.27889
(4) Ryan, B. J., Hoek, S., Fon, E. A., & Wade-Martins, R. (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: From familial to sporadic disease. Trends in Biochemical Sciences, 40(4), 200–210.https://doi.org/10.1016/j.tibs.2015.02.003
(5) Zheng, B., Liao, Z., Locascio, J. J., et al. (2013). Mitochondrial dysfunction in Parkinson’s disease: Lessons from experimental models. Neurobiology of Disease, 51, 273–284. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656616/
(6) Aflaki, E., Stubblefield, B. K., Maniwang, E., et al. (2017). Lysosomal dysfunction and its role in Parkinson’s disease. Acta Neuropathologica Communications, 5(1), 17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640195/
(7) Fernandez-Mosquera, L., Yambire, K. F., Couto, R., et al. (2022). Mitochondria–lysosome interactions in neurodegeneration. Frontiers in Cell and Developmental Biology, 10, 828205. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233091/
(8) Truban, D., Hou, X., Caulfield, T. R., Fiesel, F. C., & Springer, W. (2017). PINK1, Parkin, and mitochondrial quality control: What can we learn about Parkinson’s disease pathobiology? Journal of Parkinson's Disease, 7(1), 13–29. https://doi.org/10.3233/JPD-160871
(9) Wong, Y. C., & Holzbaur, E. L. F. (2020). Parkin-independent mitophagy in neurons. Nature Communications, 11, 4868. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466131/
(10) Glinka, Y., & Youdim, M. B. H. (1995). Inhibition of mitochondrial complexes by environmental toxins as a cause of Parkinsonism. Journal of Neurochemistry, 65(2), 764–772. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789900/
(11) Martin-Maestro, P., Gargini, R., Perry, G., & Avila, J. (2021). Antioxidant therapies in Parkinson’s disease. Current Neuropharmacology, 19(3), 223–237. https://doi.org/10.2174/1570159X186662010261150189
(12) Yao, L., & Liu, Y. (2022). Precision mitochondrial medicine for Parkinson’s disease: Advances and perspectives. Frontiers in Neuroscience, 16, 841598. https://doi.org/10.3389/fnins.2022.841598
