Evaluating Probiotic therapy as a Gut-Brain Microbiota and Neuroinflammation Modulator in Parkinson's disease: A Systematic Review
pdf (English)

როგორ უნდა ციტირება

Ojukwu, E. A., Ojukwu, V. E., & Davis, J.-M. (2025). Evaluating Probiotic therapy as a Gut-Brain Microbiota and Neuroinflammation Modulator in Parkinson’s disease: A Systematic Review. ახალგაზრდა მკვლევარები, 3(2), 27–41. https://doi.org/10.52340/jr.2025.03.02.06

ანოტაცია

Parkinson's disease (PD) has over 10 million individuals affected worldwide, and its occurrence is rising due to the aging population (Dorsey et al., 2018). It is largely identified by its characteristic motor features, including bradykinesia, tremor, and rigidity, which result from the degeneration of dopaminergic neurons within the substantia nigra. However, PD pathophysiology has significantly advanced in recent years, with further recognition of the role played by gut-brain interactions in the etiology of disease. Gut microbiota has also been shown to modulate neuroinflammation, one of the salient features of PD pathogenesis (Sampson et al., 2016).

New evidence supports the hypothesis that PD is caused by dysbiosis of the gut microbiota influencing systemic inflammation, neurotransmitter production, and even neuronal degeneration (Zhu et al., 2022). This has raised interest in probiotic treatment as a solution. Probiotics, active nonpathogenic microorganisms have beneficial effects on the host's health, may regulate the gut microbiota potentially reduce neuroinflammation, and improve both the motor and the non-motor symptoms of PD (Palleja et al., 2019).

Several studies have already demonstrated changes in gut microbiota composition in PD patients compared to healthy controls, with reduced beneficial species such as Lactobacillus and Bifidobacterium, and elevated pro-inflammatory species (Yang et al., 2018). Probiotic treatment has been encouraged in animal models of PD, and initial clinical trials suggest that it could have therapeutic potential for symptom relief and even disease modification (Hsieh T. et al., 2020).

This systematic review evaluates the current literature on probiotic therapy in PD, targeting how they affect the gut microbiota, neuroinflammation, and clinical parameters. A review of preclinical, clinical, and in vitro research will hopefully provide a broad, overarching overview of the state of probiotics research on PD treatment.

 

https://doi.org/10.52340/jr.2025.03.02.06
pdf (English)

წყაროები

Dorsey, E. R., Sherer, T., Okun, M. S., & Bloem, B. R. (2018). The Emerging Evidence of the Parkinson Pandemic. Journal of Parkinson's disease, 8(s1), S3–S8. https://doi.org/10.3233/JPD-181474

Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., Challis, C., Schretter, C. E., Rocha, S., Gradinaru, V., Chesselet, M. F., Keshavarzian, A., Shannon, K. M., Krajmalnik-Brown, R., Wittung-Stafshede, P., Knight, R., & Mazmanian, S. K. (2016). Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 167(6), 1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

Zhu, M., Liu, X., Ye, Y., Yan, X., Cheng, Y., Zhao, L., Chen, F., & Ling, Z. (2022). Gut Microbiota: A Novel Therapeutic Target for Parkinson's Disease. Frontiers in immunology, 13, 937555. https://doi.org/10.3389/fimmu.2022.937555

Palleja, A., Mikkelsen, K. H., Forslund, S. K., Kashani, A., Allin, K. H., Nielsen, T., Hansen, T. H., Liang, S., Feng, Q., Zhang, C., Pyl, P. T., Coelho, L. P., Yang, H., Wang, J., Typas, A., Nielsen, M. F., Nielsen, H. B., Bork, P., Wang, J., Vilsbøll, T., … Pedersen, O. (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nature microbiology, 3(11), 1255–1265. https://doi.org/10.1038/s41564-018-0257-9

Yang, H., Wang, W., Romano, K. A., Gu, M., Sanidad, K. Z., Kim, D., Yang, J., Schmidt, B., Panigrahy, D., Pei, R., Martin, D. A., Ozay, E. I., Wang, Y., Song, M., Bolling, B. W., Xiao, H., Minter, L. M., Yang, G. Y., Liu, Z., Rey, F. E., … Zhang, G. (2018). A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Science translational medicine, 10(443), eaan4116. https://doi.org/10.1126/scitranslmed.aan4116

Hsieh, T. H., Kuo, C. W., Hsieh, K. H., Shieh, M. J., Peng, C. W., Chen, Y. C., Chang, Y. L., Huang, Y. Z., Chen, C. C., Chang, P. K., Chen, K. Y., & Chen, H. Y. (2020). Probiotics Alleviate the Progressive Deterioration of Motor Functions in a Mouse Model of Parkinson's Disease. Brain sciences, 10(4), 206. https://doi.org/10.3390/brainsci10040206

Hill-Burns, E. M., Debelius, J. W., Morton, J. T., Wissemann, W. T., Lewis, M. R., Wallen, Z. D., Peddada, S. D., Factor, S. A., Molho, E., Zabetian, C. P., Knight, R., & Payami, H. (2017). Parkinson's disease and Parkinson's disease medications have distinct signatures of the gut microbiome. Movement disorders : official journal of the Movement Disorder Society, 32(5), 739–749. https://doi.org/10.1002/mds.26942

Westfall, S., Lomis, N., Kahouli, I., Dia, S. Y., Singh, S. P., & Prakash, S. (2017). Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and molecular life sciences : CMLS, 74(20), 3769–3787. https://doi.org/10.1007/s00018-017-2550-9

Unger, M. M., Spiegel, J., Dillmann, K. U., Grundmann, D., Philippeit, H., Bürmann, J., Faßbender, K., Schwiertz, A., & Schäfer, K. H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism & related disorders, 32, 66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

Tan, A. H., Lim, S. Y., Chong, K. K., A Manap, M. A. A., Hor, J. W., Lim, J. L., Low, S. C., Chong, C. W., Mahadeva, S., & Lang, A. E. (2021). Probiotics for Constipation in Parkinson Disease: A Randomized Placebo-Controlled Study. Neurology, 96(5), e772–e782. https://doi.org/10.1212/WNL.0000000000010998

Lombardi, V. C., De Meirleir, K. L., Subramanian, K., Nourani, S. M., Dagda, R. K., Delaney, S. L., & Palotás, A. (2018). Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. The Journal of nutritional biochemistry, 61, 1–16. https://doi.org/10.1016/j.jnutbio.2018.04.004

Uyar, G. Ö., & Yildiran, H. (2019). A nutritional approach to microbiota in Parkinson's disease. Bioscience of microbiota, food and health, 38(4), 115–127. https://doi.org/10.12938/bmfh.19-002

Barichella, M., Pacchetti, C., Bolliri, C., Cassani, E., Iorio, L., Pusani, C., Pinelli, G., Privitera, G., Cesari, I., Faierman, S. A., Caccialanza, R., Pezzoli, G., & Cereda, E. (2016). Probiotics and prebiotic fiber for constipation associated with Parkinson disease: An RCT. Neurology, 87(12), 1274–1280. https://doi.org/10.1212/WNL.0000000000003127

Ibrahim, A., Ali, R. A. R., Manaf, M. R. A., Ahmad, N., Tajurruddin, F. W., Qin, W. Z., Desa, S. H. M., & Ibrahim, N. M. (2020). Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson's disease: A randomised controlled trial. PloS one, 15(12), e0244680. https://doi.org/10.1371/journal.pone.0244680

Ghalandari, N., Assarzadegan, F., Habibi, S. A. H., Esmaily, H., & Malekpour, H. (2023). Efficacy of Probiotics in Improving Motor Function and Alleviating Constipation in Parkinson's Disease: A Randomized Controlled Trial. Iranian journal of pharmaceutical research : IJPR, 22(1), e137840. https://doi.org/10.5812/ijpr-137840

Andreozzi, V., Cuoco, S., Balestrieri, M., Fierro, F., Ferrara, N., Erro, R., Di Filippo, M., Barbella, G., Memoli, M. C., Silvestri, A., Squillante, M., Guglielmetti, S., Barone, P., Iovino, P., & Pellecchia, M. T. (2024). Synbiotic supplementation may globally improve non-motor symptoms in patients with stable Parkinson's disease: results from an open label single-arm study. Scientific reports, 14(1), 23095. https://doi.org/10.1038/s41598-024-74400-w

Xiang, S., Ji, J. L., Li, S., Cao, X. P., Xu, W., Tan, L., & Tan, C. C. (2022). Efficacy and Safety of Probiotics for the Treatment of Alzheimer's Disease, Mild Cognitive Impairment, and Parkinson's Disease: A Systematic Review and Meta-Analysis. Frontiers in aging neuroscience, 14, 730036. https://doi.org/10.3389/fnagi.2022.730036

Kalyanaraman, B., Cheng, G., & Hardy, M. (2024). Gut microbiome, short-chain fatty acids, alpha-synuclein, neuroinflammation, and ROS/RNS: Relevance to Parkinson's disease and therapeutic implications. Redox biology, 71, 103092. https://doi.org/10.1016/j.redox.2024.103092

Ashique, S., Mohanto, S., Ahmed, M. G., Mishra, N., Garg, A., Chellappan, D. K., Omara, T., Iqbal, S., & Kahwa, I. (2024). Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application. Heliyon, 10(13), e34092. https://doi.org/10.1016/j.heliyon.2024.e34092

Kalampokini, S., Becker, A., Fassbender, K., Lyros, E., & Unger, M. M. (2019). Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. Parkinson's disease, 2019, 7535472. https://doi.org/10.1155/2019/7535472

Raval, U., Harary, J. M., Zeng, E., & Pasinetti, G. M. (2020). The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegenerative disorders. Expert review of neurotherapeutics, 20(7), 673–686. https://doi.org/10.1080/14737175.2020.1775585

Gabrielli, M., Zileri Dal Verme, L., Zocco, M. A., Nista, E. C., Ojetti, V., & Gasbarrini, A. (2024). The Role of the Gastrointestinal Microbiota in Parkinson's Disease. Biomolecules, 15(1), 26. https://doi.org/10.3390/biom15010026

Lubomski, M., Xu, X., Holmes, A. J., Muller, S., Yang, J. Y. H., Davis, R. L., & Sue, C. M. (2022). The Gut Microbiome in Parkinson's Disease: A Longitudinal Study of the Impacts on Disease Progression and the Use of Device-Assisted Therapies. Frontiers in aging neuroscience, 14, 875261. https://doi.org/10.3389/fnagi.2022.875261

Sun, J., Li, H., Jin, Y., Yu, J., Mao, S., Su, K. P., Ling, Z., & Liu, J. (2021). Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson's disease via gut microbiota-GLP-1 pathway. Brain, behavior, and immunity, 91, 703–715. https://doi.org/10.1016/j.bbi.2020.10.014

Cuevas-Carbonell, S. G., Vásquez-Celaya, L., García-López, D., Granados-Patrón, D., García-Miss, M. D. R., Álvarez-Cervera, F. J., Mut-Martín, M., Parra, I., Mendieta, L., Salgado, H., Alamilla, J., Cruz-Bojórquez, R., Ávila-Escalante, M. L., Aranda-González, I. I., & Góngora-Alfaro, J. L. (2022). Chronic Treatment with the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis BB12 Attenuates Motor Impairment, Striatal Microglial Activation, and Dopaminergic Loss in Rats with 6-Hydroxydopamine-induced Hemiparkinsonism. Neuroscience, 507, 79–98. https://doi.org/10.1016/j.neuroscience.2022.11.004

Cacabelos R. (2017). Parkinson's Disease: From Pathogenesis to Pharmacogenomics. International journal of molecular sciences, 18(3), 551. https://doi.org/10.3390/ijms18030551

Alexoudi, A., Kesidou, L., Gatzonis, S., Charalampopoulos, C., & Tsoga, A. (2023). Effectiveness of the Combination of Probiotic Supplementation on Motor Symptoms and Constipation in Parkinson's Disease. Cureus, 15(11), e49320. https://doi.org/10.7759/cureus.49320

Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis Campbell Systematic Reviews, 18, e1230. https://doi.org/10.1002/cl2.1230

Download citation (.ris)

Downloads

Download data is not yet available.