DIETARY IMPACT ON THE GUT MICROBIOME AND ITS EFFECTS ON CLOSTRIDIUM DIFFICILE, INFLAMMATORY BOWEL DISEASES, AND METABOLIC SYNDROMES (Review Article)
DOI:
https://doi.org/10.52340/jecm.2022.02.20ანოტაცია
Gut microbiomes have long been known to have diverse effects on normal human health. Medical researchers and microbiologists have studied how it is maintained, about its composition, and how it can be altered. Different types of diets have varied implications on the gut microbiota and its homeostasis. This review paper discusses the different studies conducted on the matters of how diets influence the gut microbiome and also its effect on certain medical conditions, Clostridium difficile infection, Inflammatory bowel disease, and metabolic syndrome.
Downloads
წყაროები
Ananthakrishnan AN, Khalili H, Song M, Higuchi LM, Richter JM, Chan AT. Zinc intake and risk of Crohn’s disease and ulcerative colitis: a prospective cohort study. Int JEpidemiol. 2015;44(6):1995-2005. doi:10.1093/ije/dyv301
Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 2015; 66:343-359. doi:10.1146/annurev-med-060513-093205
Burisch J, Munkholm P. The epidemiology of inflammatory bowel disease. Scand JGastroenterol. 2015;50(8):942-951. doi:10.3109/00365521.2015.1014407
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11(10):577–591. doi:10.1038/nrendo.2015.128.
Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoSOne. 2012;7(6):e28742. doi:10.1371/journal.pone.0028742
Cantorna MT, McDaniel K, Bora S, Chen J, James J. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease. ExpBiol Med (Maywood). 2014;239(11):1524-1530. doi:10.1177/1535370214523890
Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744-1754. doi:10.1136/gutjnl-2014-307913
Chiba M, Nakane K, Komatsu M. Westernized Diet is the Most Ubiquitous Environmental Factor in Inflammatory Bowel Disease. Perm J. 2019; 23:18-107. doi:10.7812/TPP/18-107
Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. AdvImmunol. 2010; 107:243-274. doi:10.1016/B978-0-12-381300-8.00008-3
Clark A, Mach N. Role of Vitamin D in the Hygiene Hypothesis: The Interplay between Vitamin D, Vitamin D Receptors, Gut Microbiota, and Immune Response. Front Immunol. 2016; 7:627. Published 2016 Dec 23. doi:10.3389/fimmu.2016.00627.
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258-1270. doi:10.1016/j.cell.2012.01.035.
Das, P., Babaei, P. & Nielsen, J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics 20, 208 (2019).
deVrese M, Marteau PR. Probiotics and prebiotics: effects on diarrhea. J Nutr.2007;137(3 Suppl 2):803S-11S. doi:10.1093/jn/137.3.803S
Fazio VW, Ziv Y, Church JM, et al. Ileal pouch-anal anastomoses complications and function in 1005 patients. Ann Surg. 1995;222(2):120-127. doi:10.1097/00000658-199508000-00003.
Fechner A, Kiehntopf M, Jahreis G. The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults. J Nutr. 2014;144(5):599-607. doi:10.3945/jn.113.186858
Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota [published correction appears in Nature. 2017 May 3;545(7652):116]. Nature. 2015;528(7581):262-266. doi:10.1038/nature15766
Froicu M, Weaver V, Wynn TA, McDowell MA, Welsh JE, Cantorna MT. A crucial role for the vitamin D receptor in experimental inflammatory bowel diseases. MolEndocrinol. 2003;17(12):2386-2392. doi:10.1210/me.2003-0281
Hibberd MC, Wu M, Rodionov DA, et al. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. SciTransl Med. 2017;9(390):eaal4069. doi:10.1126/scitranslmed.aal4069.
Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut
Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database SystRev. 2017;3(3):CD008524. Published 2017 Mar 11. doi:10.1002/14651858.CD008524.pub3.
Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut2018;67(1):108-119. doi:10.1136/gutjnl-2016-312135
Khalili H, Chan SSM, Lochhead P, Ananthakrishnan AN, Hart AR, Chan AT. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat Rev GastroenterolHepatol. 2018;15(9):525-535. doi:10.1038/s41575-018-0022-9
Khalili H, Malik S, Ananthakrishnan AN, et al. Identification and Characterization of a Novel Association between Dietary Potassium and Risk of Crohn's Disease and Ulcerative Colitis. Front Immunol. 2016; 7:554. Published 2016 Dec 7. doi:10.3389/fimmu.2016.00554
Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015;22(6):971-982. doi:10.1016/j.cmet.2015.10.00
Lassenius MI, Pietiläinen KH, Kaartinen K, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care . 2011;34(8):1809-1815. doi:10.2337/dc10-2197
Leite G, Morales W, Weitsman S, et al. The duodenal microbiome is altered in small intestinal bacterial overgrowth. PLoSOne. 2020;15(7):e0234906. Published 2020 Jul 9. doi:10.1371/journal.pone.0234906.
Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23(6):705-715. doi:10.1016/j.chom.2018.05.01.
Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol. 2011;12(1):5-9. doi:10.1038/ni0111-.
Matey-Hernandez ML, Williams FMK, Potter T, Valdes AM, Spector TD, Menni C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics. 2018;50(2):117-126. doi:10.1152/physiolgenomics.00053.2017
Mefferd CC, Bhute SS, Phan JR, et al. A High-Fat/High-Protein, Atkins-Type Diet Exacerbates Clostridioides (Clostridium) difficile Infection in Mice, whereas a High-Carbohydrate Diet Protects. mSystems. 2020;5(1):e00765-19. Published 2020 Feb 11. doi:10.1128/mSystems.00765-19
Molinaro A, Wahlström A, Marschall HU. Role of Bile Acids in Metabolic Control. Trends EndocrinolMetab. 2018;29(1):31-41. doi:10.1016/j.tem.2017.11.002
Moore JH, Pinheiro CC, Zaenker EI, et al. Defined Nutrient Diets Alter Susceptibility to Clostridium difficile Associated Disease in a Murine Model [published correction appears in PLoS One. 2015;10(9):e0137037]. PLoSOne. 2015;10(7):e0131829. Published 2015 Jul 16. doi:10.1371/journal.pone.0131829
Olendzki BC, Silverstein TD, Persuitte GM, Ma Y, Baldwin KR, Cave D. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. NutrJ. 2014; 13:5. Published 2014 Jan 16. doi:10.1186/1475-2891-13-5. Published 2019 Jul 16. doi:10.3390/nu11071613
Rea MC, Sit CS, Clayton E, et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. ProcNatlAcadSci U S A. 2010;107(20):9352-9357. doi:10.1073/pnas.0913554107
Roberts CL, Keita AV, Duncan SH, et al. Translocation of Crohn's disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut.2010;59(10):1331-1339. doi:10.1136/gut.2009.195370
Roses RE, Rombeau JL. Recent trends in the surgical management of inflammatory bowel disease. World Journal of Gastroenterology. 2008 Jan;14(3):408-412. DOI: 10.3748/wjg.14.408.
Ryan JJ, Hanes DA, Bradley RD, Contractor N. Effect of a Nutrition Support Formula in Adults With Inflammatory Bowel Disease: A Pilot Study. Glob Adv Health Med. 2019; 8:2164956119867251. Published 2019 Jul 29. doi:10.1177/2164956119867251
Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225-235. doi:10.1016/j.cmet.2013.01.003
Smith MI, Yatsunenko T, Manary MJ, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science .2013;339(6119):548-554. doi:10.1126/science.1229000
Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779-786. doi:10.1016/j.cmet.2014.07.003
Theriot CM, Koenigsknecht MJ, Carlson PE Jr, et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun. 2014; 5:3114. doi:10.1038/ncomms4114
Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015; 6:7629. Published 2015 Jul 2. doi:10.1038/ncomms8629
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-249. doi:10.1038/nature11552
Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213-223. doi:10.1016/j.chom.2008.02.015.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi:10.1038/nature05414.
Van der Waaij D, Berghuis-de Vries JM, LekkerkerkLekkerkerk-v. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond). 1971;69(3):405-411. doi:10.1017/s0022172400021653
Van Immerseel F, Ducatelle R, De Vos M, et al. Butyric acid-producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J MedMicrobiol. 2010;59(Pt 2):141-143. doi:10.1099/jmm.0.017541-0
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science.2011;334(6052):105-108. doi:10.1126/science.1208344.
Xiao HB, Sun ZL, Zhang HB, Zhang DS. Berberine inhibits dyslipidemia in C57BL/6 mice with lipopolysaccharide induced inflammation. PharmacolRep. 2012;64(4):889-895. doi:10.1016/s1734-1140(12)70883-6
Xu Z, Knight R. Dietary effects on human gut microbiome diversity. British Journal ofNutrition. 2015;113(S1): S1-S5. doi:10.1017/S0007114514004127
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020;12(2):381. Published 2020 Jan 31. doi:10.3390/nu12020381.
Zackular JP, Chazin WJ, Skaar EP. Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. J Biol Chem. 2015;290(31):18991-18998. doi:10.1074/jbc.R115.645085
Zackular JP, Moore JL, Jordan AT, et al. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection [published correction appears in Nat Med. 2016 Dec 6;22(12):1502]. Nat Med. 2016;22(11):1330-1334. doi:10.1038/nm.4174
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev GastroenterolHepatol. 2019;16(1):35-56. doi:10.1038/s41575-018-0061-2