AGE-SPECIFIC FEATURES OF ISNULIN-LIKE GROWTH FACTOR 1, ITS BINDING PROTEIN 3, AND CARBOHYDRATE HOMEOSTASIS IN PATIENTS WITH COLORECTAL CANCER
DOI:
https://doi.org/10.52340/jecm.2022.06.14Abstract
Aim. The aim of our study was to study of age-specific features of IGF-1, IGF BP3, and carbohydrate homeostasis in patients with colorectal cancer.
Methods: The study and control groups consisted of 50-50 participants, who were divided into three age groups, Group 1 (30-55 yrs.); Group 2 (55-65 yrs.); Group 3 (>65 yr.). IGF-1, IGF BP3, Serum insulin and glucose levels were performed.
Results: The mean IGF-1 values for the age groups were as follows: study group S1 (35-55 yrs.) - 214.5 ± 23.0; study group S2 (55-65 yrs.) - 202.5 ± 15.5; study group S3 (> 65 yr.) - 190.5 ± 22.0; control group C1 (35-55 yrs.) - 162.3 ± 31.7; control group C2 (55-65 yrs.) - 150.6 ± 35.7; control group C3 (> 65 yr.) - 146.1 ± 32.4. The mean IGF BP3 values for the age groups were as follows: study group S1 (35-55 yrs.) - 2.0 ± 0.7; study group S2 (55-65 yrs.) - 1.6 ± 0.3; study group S3 (> 65 yr.) - 1.7 ± 0.6; control group C1 (35-55 yrs.) - 3.6 ± 1.0; control group C2 (55-65 yrs.) - 3.9 ± 1.0; control group C3 (> 65 yr.) - 3.6 ± 0.9.
Conclusion. Age-dependent features of the IGF-system have been reported in patients with colorectal cancer. Moreover, in all age groups of CRC patients, despite the nature of the change of IGF-1 and IGF BP3, a inverse association was maintained between these parameters. However, the concentration of sex-adjusted IGF-1 in the lower age group is significantly low compared to the old age group.
Downloads
References
Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020; 70:145–164.
International Agency for Research on Cancer (IARC) Global Cancer Observatory (GLOBOCAN) IARC; Lyon: 2018.
Cancer in Georgia 2015-2019. National Center for Disease Control and Public Health of Georgia. Official Bulletin of NCDC, 2020; Tbilisi, Georgia.
Kasprzak A., Szaflarski W. Role of Alternatively Spliced Messenger RNA (mRNA) Isoforms of the Insulin-Like Growth Factor 1 (IGF1) in Selected Human Tumors. Int. J. Mol. Sci. 2020; 21:6995.
Aguirre G.A., De Ita J.R., de la Garza R.G., Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J. Transl. Med. 2016; 14:3.
Berk Ş, Janssen JAMJL, van Koetsveld PM, Dogan F, Değerli N, Özcan S, Kelestimur F, Hofland LJ. Modifying Effects of Glucose and Insulin/Insulin-Like Growth Factors on Colon Cancer Cells. Front Oncol. 2021; 11:645732.
Gao Y., Katki H., Graubard B., Pollak M., Martin M., Tao Y., Schoen R.E., Church T., Hayes R.B., Greene M.H., et al. Serum IGF1, IGF2 and IGFBP3 and risk of advanced colorectal adenoma. Int. J. Cancer. 2012; 131:E105–E113.
Jiang B., Zhang X., Du L.L., Wang Y., Liu D.B., Han C.Z., Jing J.X., Zhao X.W., Xu X.Q. Possible roles of insulin, IGF-1 and IGFBPs in initiation and progression of colorectal cancer. World J. Gastroenterol. 2014; 20:1608–1613.
Giovannucci E., Pollak M.N., Platz E.A., Willett W.C., Stampfer M.J., Majeed N., Colditz G.A., Speizer F.E., Hankinson S.E. A prospective study of plasma insulin-like growth factor-1 and binding protein-3 and risk of colorectal neoplasia in women. Cancer Epidemiol. Biomarkers Prev. 2000; 9:345–349.
Kushlinskii N.E., Gershtein E.S., Nikolaev A.A., Delektorskaya V.V., Korotkova E.A., Dvorova E.K., Kostyleva O.I. Insulin-like growth factors (IGF), IGF-binding proteins (IGFBP), and vascular endothelial growth factor (VEGF) in blood serum of patients with colorectal cancer. Bull.Exp.Biol.Med.2014; 156:684–688.
Naguib R, Abouegylah M, Sharkawy S, Fayed AA, Naguib H. Evaluation of Serum Levels of Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor-Binding Protein 3 in Patients With Colorectal Cancer: A Case-Control Study. Cureus. 2021; 13(11):e19881.
Peters G., Gongoll S., Langner C., Mengel M., Piso P., Klempnauer J., Rüschoff J., Kreipe H., von Wasielewski R. IGF-1R, IGF-1 and IGF-2 expression as potential prognostic and predictive markers in colorectal-cancer. Virchows Arch. 2003; 443:139–145.
Kasprzak A., Szaflarski W., Szmeja J., Andrzejewska M., Przybyszewska W., Kaczmarek E., Koczorowska M., Kościński T., Zabel M., Drews M. Differential expression of IGF-1 mRNA isoforms in colorectal carcinoma and normal colon tissue. Int. J. Oncol. 2013; 42:305–316.
Shiratsuchi I., Akagi Y., Kawahara A., Kinugasa T., Romeo K., Yoshida T., Ryu Y., Gotanda Y., Kage M., Shirouzu K. Expression of IGF-1 and IGF-1R and their relation to clinicopathological factors in colorectal cancer. Anticancer Res. 2011; 31:2541–2545.
Nosho K., Yamamoto H., Taniguchi H., Adachi Y., Yoshida Y., Arimura Y., Endo T., Hinoda Y., Imai K. Interplay of insulin-like growth factor-II, insulin-like growth factor-I, insulin-like growth factor-I receptor, COX-2, and matrix metalloproteinase-7, play key roles in the early stage of colorectal carcinogenesis. Clin. Cancer Res. 2004; 10:7950–7957.
Kasprzak A. Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci. 2021 Jun 16; 22(12):6434.
Li Z, Pan W, Shen Y, Chen Z, Zhang L, Zhang Y, Luo Q, Ying X. IGF1/IGF1R and microRNA let-7e down-regulate each other and modulate proliferation and migration of colorectal cancer cells. Cell Cycle. 2018; 17(10):1212-1219.
Yamamoto N., Oshima T., Yoshihara K., Aoyama T., Hayashi T., Yamada T., Sato T., Shiozawa M., Yoshikawa T., Morinaga S., et al. Clinicopathological significance and impact on outcomes of the gene expression levels of IGF-1, IGF-2 and IGF-1R, IGFBP-3 in patients with colorectal cancer: Overexpression of the IGFBP-3 gene is an effective predictor of outcomes in patients with colorectal cancer. Oncol. Lett. 2017; 13:3958–3966.
Ma J, Pollak M, Giovannucci E, Pollak M et al. Insulin and insulin-like growth factor signaling in neoplasia. Nat Rev Cancer. 2008; 8:915-28.
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care.2004; 27(6):1487-95.
Zoncu R., Efeyan A., Sabatini D.M. mTOR: From growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011; 12:21–35.
Maglapheridze Z, Kapetivadze V, Tabukashvili R, Lazashvili T, Kuparadze M, Gratiasvhili E. The Role of Insulin-Like Growth Factor-1 and Insulin in the Development of Colorectal Cancer. GMN 2021; 315(6):26-29.
Rahmani J, Montesanto A, Giovannucci E, Zand H, Barati M, Kopchick JJ, Mirisola MG, Lagani V, Bawadi H, Vardavas R, Laviano A, Christensen K, Passarino G, Longo VD. Association between IGF-1 levels ranges and all-cause mortality: A meta-analysis. Aging Cell. 2022; 21(2):e13540.
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen. 2022; 42(1):2.
Wilson SJ, Bailey BE, Malarkey WB, Kiecolt-Glaser JK. Linking Marital Support to Aging-Related Biomarkers: Both Age and Marital Quality Matter. J Gerontol B Psychol Sci Soc Sci. 2021; 76(2):273-282.
Blagosklonny MV. Rapamycin for longevity: opinion article. Aging (Albany NY). 2019; 11(19):8048-8067.
Pechlivanis S, Wagner K, Chang-Claude J, Hoffmeister M, Brenner H, Försti A. Polymorphisms in the insulin like growth factor 1 and IGF binding protein 3 genes and risk of colorectal cancer. Cancer Detect Prev. 2007; 31(5):408-416.
Ma C, Wang Y, Wilson KM, Mucci LA, Stampfer MJ, Pollak M, Penney KL. Circulating Insulin-Like Growth Factor 1-Related Biomarkers and Risk of Lethal Prostate Cancer. JNCI Cancer Spectr. 2021; 6(1):pkab091.