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Abstract 

Introduction  

   Puberty marks a significant developmental milestone in an individual's life. Understanding 

the factors that influence the timing and progression of puberty is crucial. Nutrition plays a 

vital role in shaping puberty's onset and progression. This paper proposes future research 

directions to delve into the specific effects of toxins present in ultra-processed food, such as 

advanced glycated end products (AGEs) and its most prominent marker, Carboxymethyl lysine 

(CML), on pubertal changes in the modern world. 

 

Methods  

   The search was conducted in three databases (ScienceDirect, PubMed and Scopus) and one 

central register (The Cochrane Central Register of Controlled Trials) from 2019 to 2024. The 

search was tailored for each database to construct the searches. We excluded articles involving 

participants with medical conditions capable of influencing sexual development. Humans, not 

automation tools, removed ineligible articles. Five reviewers performed the full-text screening 

independently. 

 

Results  

https://doi.org/10.52340/spectri.2024.09.01.01
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   This initial search resulted in 567 unique entries. Additional sources were discovered by 

searching these articles for other potential references. Ultimately, 170 articles were included in 

the review. The final sources are listed in the References section. 

 

Conclusions 

   In conclusion, this review emphasises the importance of food processing on pubertal timing. 

Demonstrating a direct association between Carboxymethyl lysine (CML) and pubertal timing 

is essential in highlighting the significance of modifiable factors such as diet. Acknowledging 

that numerous compounding factors influence the population and database studies, further 

research on preclinical models will offer valuable insights for educating physicians/parents 

about cooking methods affecting CML formation. 

 

Keywords: Pubertal Development, Nutrition, Carboxymethyl-lysine, AGEs, Ultra-processed 

Food. 
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შესავალი 

ბავშვებში სქესობრივ მომწიფების ინიცირებასა და მიმდინარეობაზე ზეგავლენის 

მრავალი ფაქტორია აღწერილი სამეცნიერო ლიტერატურაში.თუმცა, ნაადრევი 

სქესობრივი მომწიფების ინსიდენსის ზრდამ აქტუალური გახადა კითხვა - აქვს თუ 
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არა კლინიკურად მნიშვნელოვანი გავლენა ულტრა-პროცესირებული საკვების 

მოხმარებას გოგონებში სქესობრივი განვითარების ინცირებასა და 

მიმდინარეობაზე?  

ენდოკრინოლოგიის ეროვნული ინსტიტუტის სამეცნიერო გუნდმა 

ჩაატარა  ლიტერატურული მიმოხილვა იმისათვის რომ გამოევლინა - 

რამდენად მჭიდროა კორელაცია საკვების პროცესირების მარკერ კარბოქსიმეთილ-

ლიზინსა (CML) და პუბერტატულო განვითარების თავისებურებებს შორის.  

 

მეთოდოლოგია 

 

კვლევის ფარგლებში მოძიებულ იქნა 2019- 2024 (დღემდე) პერიოდში 

გამოქვეყნებული  სამეცნიერო მასალები მონაცემთა სამი ბაზიდან:   ScienceDirect, 

PubMed and Scopus და ერთი ცენტრალური რეესტრიდან -  The Cochrane Central 

Register of Controlled Trials. 

საძიებო მეთოდოლოგია მორგებულ იქნა თითოეულ მონაცემთა ბაზას. 

გამორიცხვის კრიტერიუმად მიღებულ იქნა სამედიცინო მდგომარეობები, 

რომელიც გავლენას ახდენს სქესობრივ მომწიფებაზე. 

სტატიები რომლებიც სცდებოდა კვლევის არეალს, ან არ აკმაყოფილებდა 

ჩართვა/გამორიცხვის კრიტერიუმებს, შეფასდა და გამოირიცხა 

ენდოკრინოლოგიის ეროვნული ინსტიტუტის სამეცნიერო ჯგუფის მიერ და არა 

კომპიუტერული პროგრამის დახმარებით. სტატიების სრული ტექსტი შეამოწმა და 

მიმოიხილა ხუთმა მკვლევარმა დამოუკიდებლად.  

  

 შედეგები 

თავდაპირველი ძიებით მოპოვებულ იქნა 567 სტატია. ამ სტატიების სრული 

მიმოხილვის საფუძველზე შეფასდა დამატებითი წყაროები. 

საბოლოოდ, წარმოდგენილი მიმოხილვა მოიცავს 170 სტატიას (კვლევით 

სტატიებსა და ლიტერატურულ მიმოხილვებს). წყაროების სრული ჩამონათვალი 

წარმოდგენილია ბიბლიოგრაფიის ნუსხით. 

 

დასკვნა 

ლიტერატურის მიმოხილვა  ხაზს უსვამს საკვების ულტრა-პროცესირების 

შედეგად მასში წარმოქმნილი პოტენციური ტოქსინების გავლენას სქესობრივი 

მომწიფებაზე. შედეგად, გამოიკვეთა კვლევის აუცილებლობა შეფასდეს 

კარბოქსიმეთილ-ლიზინსა (CML) და სქესობრივ მომწიფებას შორის პირდაპირი 

დამოკიდებულება. ამ კორელაციის დემონსტრირება გააძლიერებს  კვების 

ფაქტორს, როგორც მარტივად მოდიფიცირებად კომპონენტს მკურნალობის 

გეგმაში. 

იმ ფაქტის გათვალისწინებით, რომ პოპულაციურ და კლინიკურ კვლევებში 

მონაცემთა შდეგებზე გავლენა აქვს მრავალი ფაქტორის ერთობლივ მოქმედებას, 

ჩვენი სამეცნიერო გუნდი შეაფასებს პრეკლინიკურ მოდელებში  საკვების ულტრა-

პროცესირების მარკერის კარბოქსიმეთილ-ლიზინის კუმულაციური ეფექტს, 

დამოუკიდებლად სხვა ენდოკრინული დისრაპტორებისგან.  
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პუბერტატი, პროცესირებული საკვები. 
 

Introduction 

 

   Over the past few decades, there has been a noticeable increase in body mass index (BMI) 

and obesity rates among children and adolescents worldwide[1]. Secular trends towards obesity 

among children coincide with the trend towards earlier pubertal timing [2]. Girls are more 

likely to experience an earlier onset of puberty when they are obese. Conversely, boys with 

severe obesity may often experience a delayed onset of puberty [3]. The accelerated increase 

in pediatric puberty with the rise in sexual precocity in girls has prompted inquiries into the 

interrelated mechanisms: Is nutrition the fundamental factor contributing to this phenomenon? 

If so, what specific alterations in nutritional patterns may account for the observed changes? 

The practice of food production and processing is an age-old tradition of humanity. Humans 

cultivated, harvested, and transformed raw ingredients into nourishing meals from ancient 

times. As we delve into the complexities of the modern food industry, we must recognise that 

the reaction to growing, preparing, and consuming food has been an integral part of our cultural 

and culinary heritage. 

   As the food industry continues to evolve and expand, the processes involved in food 

production have undergone significant changes. These advancements have brought about a 

range of damaging factors that affect not only the quality of our food but also the environment 

and human health.  

   Nutrition is an essential source of exogenous advanced glycation end products (AGEs) where 

thermally processed foods, especially lipid and protein-rich foods typical of Western-style 

diets, contain many toxicant AGEs. Advanced glycation end products (AGEs) are created when 

protein reacts with reducing sugar during food processing, cooking, and storage [4][5]. There 

is controversy about whether dietary AGEs play a role in secular trends to earlier pubertal 

development. Recognising the factors that impact puberty [6], our study seeks to specifically 

explore the impact of food toxins, including advanced glycation end products and their primary 

marker, Carboxymethyl lysine (CML), on this physiological process. 

 

Methods 

    

   The search was conducted in three databases (ScienceDirect, PubMed and Scopus) and one 

central register (The Cochrane Central Register of Controlled Trials) from 2019 to 2024. The 

search was tailored for each database to construct the searches. We began our search with the 

following terms: "Advanced glycation end product", "carboxymethyl-lysine", "carboxymethyl 

lysine", "precocious puberty", and "precocious pubarche”. We used Mesh "Dietary Advanced 

Glycation End Products"[Mesh], "N(6)carboxymethyllysine" [Supplementary Concept], 

"Puberty, Precocious"[Mesh]. 

   These terms were combined with boolean operators “OR” and “AND” to ensure a thorough 

literature search. We also examined the references of the articles we included to find related 

literature. We did not consider studies involving subjects with medical conditions or diseases 

that could lead to early puberty, like adrenal dysfunction, pituitary tumours, hypothyroidism, 

and congenital disorders. 

 

Literature screening and Data Extraction  

 

https://data.worldobesity.org/publications/?cat=19
https://pubmed.ncbi.nlm.nih.gov/29029897/
file://///Users/teonanutsubidze/Desktop/3-Reinehr%20T,%20Roth%20CL.%20Is%20there%20a%20causal%20relationship%20between%20obesity%20and%20puberty
https://www.sciencedirect.com/science/article/pii/S0924224418304229?via%3Dihub
https://www.semanticscholar.org/paper/Carboxymethyllysine%2C-a-new-compound-of-heat-damage-Buser-Erbersdobler/e4a95093be5f2be1e36ba5405ca6fc1fdb1b2448
https://www.jpagonline.org/article/S1083-3188(22)00194-2/fulltext
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The research papers identified in the search were checked for duplicate entries, and then their 

titles and abstracts were carefully examined. Based on the criteria, ineligible full-text articles 

were excluded. Removed records were excluded by humans, not by automation tools. Five 

reviewers independently conducted full-text screening and data extraction. This initial search 

yielded 567 distinct entries. Further sources were found by examining these articles for 

additional potential references. In the end, 170 articles were included in the review, and the 

final sources are listed in the references section. 

 

 

Puberty – a Turning Point 

Physiology 

   Puberty is a natural phase of development where a child's body undergoes significant physical 

changes, transforming into an adult body capable of reproduction. These changes include the 

maturation of genital organs, the development of sexual characteristics, a growth spurt, shifts 

in emotional state, and, in females, the onset of menstruation (known as menarche). It occurs 

due to the activation and enhanced release of gonadotropin-releasing hormone (GnRH) in the 

hypothalamus, which stimulates the gonads to produce hormones [7]. Most GnRH cell bodies 

in humans and other primates are found in the medial basal hypothalamus (MBH) and 

periventricular regions of the infundibulum [8]. GnRH is released into the pituitary portal veins, 

which triggers the periodic release of luteinising hormone (LH) and follicle-stimulating 

hormone (FSH) from the adenohypophysis [9]. These two hormones work together to regulate 

the gonads, allowing them to generate sex steroids and gametes. GnRH secretion is not solely 

triggered at the onset of puberty. GnRH is also released during fetal development and the phase 

known as 'mini-puberty' postnatally [10][11]. This phenomenon is due to a decrease in the 

levels of placental sex hormones and the resulting loss in negative feedback on gonadotropin-

releasing hormone (GnRH). Despite increased estradiol levels, mini-puberty is not associated 

with growth acceleration, contrary to puberty occurring during childhood. The hypothalamic-

pituitary-gonadal axis (HPG) activity during “mini-puberty” ranges from birth to 4-6 months 

and two years in males and females, respectively [12]. After this period, the GnRH pulse 

generator halts until puberty, which slows reproductive function. The mechanisms that trigger 

the reinitiating of the GnRH pulse generator and the inception of puberty are not yet precise, 

although several factors regulate pubertal timing [13][14].  

The KNDy system, consisting of kisspeptin/neurokinin B/dynorphine A, is the key regulator 

of GnRH secretion. Kisspeptin, produced by Kiss1 neurons in the arcuate nucleus and 

anteroventral/periventricular nucleus, plays a crucial role in the GnRH pulse generator. 

Neurokinin B and dynorphin A provide stimulatory and inhibitory signals that modulate 

kisspeptin oscillation. These neurons are influenced by sex gonadal steroids, with AVPV/PeN 

Kiss1 neurons driving preovulatory LH increase in females and ARC Kiss1 neurons regulating 

the tonic release of GnRH/LH in response to negative feedback.[15]. Neurons expressing this 

Kisspeptin in the hypothalamus seem to directly act on individual GnRH neurons, which is 

characterised by potent depolarisation [16]. Kiss1 neurons have also been recognised in mice's 

posterodorsal part of the medial amygdala. These neurons regulate the GnRH pulse generator, 

influencing emotional and sexual behaviour, pubertal timing, and ovulation[17][18]. Although 

the KNDy system plays an essential role in the GnRH pulse generator activity, several 

observations showed that this is not the only system that regulates pubertal timing[19]. 

Recently, the kisspeptin-nNOS-GnRH or “KiNG” network that is responsible for generating 

the “GnRH pulse” and “GnRH surge” has emerged among the regulators of pubertal 

https://karger.com/books/book/255/chapter-abstract/5174899/Sexual-Precocity-Genetic-Bases-of-Central?redirectedFrom=fulltext
https://onlinelibrary.wiley.com/doi/10.1002/9781119233275.ch7
https://karger.com/hrp/article-abstract/57/Suppl.%202/2/372082/The-Neuroendocrinology-of-Human-Puberty-Revisited?redirectedFrom=fulltext
https://academic.oup.com/jcem/article/90/5/3122/2837131
https://www.nature.com/articles/nrendo.2011.164
https://www.sciencedirect.com/science/article/pii/S1521690X19300089?via%3Dihub
https://www.thelancet.com/journals/landia/article/PIIS2213-8587(15)00418-0/fulltext
https://onlinelibrary.wiley.com/doi/10.1111/ppe.12507
https://ec.bioscientifica.com/view/journals/ec/9/5/EC-20-0068.xml
https://www.jneurosci.org/content/25/49/11349
https://onlinelibrary.wiley.com/doi/10.1111/jne.12823
https://karger.com/nen/article/108/3/172/220367/Medial-Amygdala-Kiss1-Neurons-Mediate-Female
https://pubmed.ncbi.nlm.nih.gov/31872920/
https://www.frontiersin.org/articles/10.3389/fendo.2019.00828/full
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development [20]. NNOS and kisspeptin act in tandem, akin to their ability to integrate and 

coordinate distinct signals to inhibit or promote GnRH secretion, respectively. 

    Phoenixin, a neuropeptide recently discovered through data obtained from the Human 

Genome Project, has been found to stimulate the activation of GnRH and kisspeptin neurons. 

This neuropeptide plays a role in regulating fertility by influencing anterior pituitary function 

[21]. The research has also shown that phoenixin and its receptor, GPR173, directly stimulate 

human ovarian follicles [22], and phoenixin induces dose-dependent oestradiol production. 

Phoenixin induces gonadotropin secretion through GnRH stimulation mediated by kisspeptin 

[23][24]. Notably, the essential role of kisspeptin in puberty has been confirmed, as 

demonstrated by the inability of patients with inactivating mutations of the kisspeptin receptor 

to undergo pubertal progression [25][26]. 

   The physiological significance of leptin in puberty is widely recognised. Leptin, a cytokine 

primarily generated by fat cells, functions as an appetite suppressant and crucially regulates 

body weight, food consumption, and energy equilibrium by inhibiting the hypothalamic 

neuropeptide Y (NPY) to curb the appetite. [27][28]. To avoid pubertal dysfunction, average 

body weight and composition must be attained during childhood [29]. In addition to the leptin-

NPY interaction, some studies showed that leptin acts on puberty and reproductive function by 

directly interacting with the Kiss1gene. GnRH neurons lack leptin receptors, but Kiss1 neurons 

express them. Leptin directly stimulates kisspeptin release and mediates the pulsatile release 

of GnRH [30]. After puberty, gonadotropin-releasing hormone (GnRH) is usually released 

from the hypothalamus to stimulate the secretion of luteinising hormone (LH) and follicle-

stimulating hormone (FSH) from the pituitary gland [31]. Neurons that express GnRH are 

found in different regions of the hypothalamus. This placement allows the GnRH network to 

be influenced by neuroendocrine and metabolic signals [32]. A diet high in fat can directly 

stimulate neuropeptide signalling in the hypothalamus, leading to an inflammatory condition. 

As a result of the processes initiated by the joint and multifaceted impact of these factors, a 

child experiences the transformation, attaining somatic growth and reproductive maturity.  

Pubertal Timing in Girls 

 Adolescence timing is influenced by various risk factors and their intricate interaction. 

Definitions of expected pubertal timing in girls, including progression of secondary sexual 

characteristics and pubertal growth spurt, are based on hallmark studies performed by 

Marshall and Tanner in the late 1960s [33]. Pubertal onset in girls takes place between the 

ages of 8 and 13.5 years. The end of puberty in girls corresponds to menarche, followed by 

ovulatory cycles several months later [34]. A unique individual variability characterises 

pubertal timing in humans. The physiological range of age at the onset of puberty covers five 

years, representing about 6% of a life span [34]. Precocious puberty (PP) refers to the 

development of secondary sexual characteristics before the age of 8 in girls. It is classified as 

either Central PP (CPP), involving early maturation of the hypothalamic-pituitary-gonadal 

axis, or Peripheral PP (PPP), marked by excessive sex hormone secretion regardless of 

gonadotropin levels.[35]. Although the factors that explain individual differences in pubertal 

timing are not fully identified, evidence shows that the GnRH neuronal network acts under 

genetic control and environmental influence [36][37]. 

Factors affecting puberty. 

   Genetic background explains about 50-80% of the variability in pubertal onset and 

progression [38]. Some ethnic groups, mainly African American and Hispanic, show an 

earlier onset of puberty due to genetic and nutritional factors [39]. Through a balance between 

repression and activation of gene expression [40], epigenetic mechanisms regulate the 

https://pubmed.ncbi.nlm.nih.gov/33964320/
https://www.sciencedirect.com/science/article/pii/S0303720721001465?via%3Dihub
https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2826.2012.02381.x
https://pubmed.ncbi.nlm.nih.gov/30933929/
https://rep.bioscientifica.com/view/journals/rep/158/1/REP-19-0025.xml
https://academic.oup.com/jcem/article/90/12/6609/2837183
/Users/teonanutsubidze/Desktop/Clarke%20SA,%20Dhillo%20WS.%20Kisspeptin%20across%20the%20human%20lifespan/evidence%20from%20animal%20studies%20and%20beyond.%20J%20Endocrinol.%202016%20Jun;229(3)/R83-98.%20doi/%2010.1530:JOE-15-0538.%20PMID/%2027340201.
https://www.nejm.org/doi/full/10.1056/NEJMoa035322
https://www.pnas.org/doi/full/10.1073/pnas.1834399100
https://www.nature.com/articles/ng.306
https://onlinelibrary.wiley.com/doi/10.1016/j.ijdevneu.2011.03.006
https://www.mdpi.com/2075-1729/11/12/1353
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expression of critical factors in the HPG axis, along with its probable role in adapting pubertal 

timing according to the environment [41]. Most genetic and epigenetic changes involve the 

genes responsible for kisspeptin, GnRH, LH, FSH, and their receptors, which are significant 

factors in the hypothalamic-pituitary-gonadal (HPG) axis. Identification of epigenetically 

regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue 

(DLK1), respectively responsible for the repression and the activation of pubertal 

development, provides additional evidence of how epigenetic variations affect pubertal 

timing [42][43]. Epigenome plasticity refers to adapting to the environment and regulating 

gene expression without altering DNA. This flexibility of the epigenome, often referred to as 

"epigenetic memory," plays a significant role in determining the timing of puberty, although 

the exact pathways involved are not fully understood. [44].  

   Maternal education, social level, age of menarche occurrence, pre-pregnancy body mass 

index (BMI), ethnicity, age upon delivery, smoking habits, and alcohol/coffee/ tea 

consumption during pregnancy are reported to correlate with pubertal timing variations in the 

offspring [45]. Girls from urban areas and high socio-income families attained menarche 

earlier than girls from poor socio-economic status [46], and girls from urban areas attained 

menarche earlier than girls in rural areas [47]. 

    Prenatal conditions, such as intrauterine growth restriction (IUGR) and small for 

gestational age (SGA) birth, may affect pubertal development [48]. Optimal early nutrition 

during lactation and early childhood may be necessary in determining sexual maturity and 

successful reproduction later in life [49][50]. Maternal breastfeeding appears to inhibit the 

early onset of puberty, mainly due to the positive effect on childhood overweight [51]. 

Numerous studies have indicated that the length of breastfeeding was linked to the onset of 

menarche and breast growth [52][53]. Recently, age at puberty was shown to be lowered by 

in-utero exposure to phytoestrogens in a British cohort. At the same time, the consumption of 

soy products during infancy is linked to early menarche in girls in the same cohort [54] and 

to altered menstrual patterns in young adults in an American cohort [55][56].   

   Numerous studies have reported relations between early (prenatal or childhood) exposure 

to Endocrine-disrupting chemicals (EDCs) and clinical timing of puberty [57] or 

concentrations of circulating reproductive hormones [58], indicating alterations in the 

development of the hypothalamic-pituitary-gonadal axis. Several animal models of EDC 

exposure have confirmed the impact of EDCs on pubertal timing, as reviewed by Parent et 

al.[34]. Endocrine-disrupting chemicals (EDCs) can disrupt natural hormone levels by 

interfering with the production, release, transportation, function, and breakdown of 

hormones using mechanisms that affect hormone receptors and signalling pathways. They 

may function through traditional nuclear receptors, non-nuclear steroid hormone receptors, 

non-steroid receptors, orphan receptors, enzymatic pathways related to steroid production 

and breakdown, and other mechanisms that play a role in the functioning of the endocrine 

system [59]. Numerous external substances or combinations of substances have been 

classified as endocrine-disrupting chemicals (EDCs) because they can imitate or hinder the 

function of the endocrine system and metabolism, leading to adverse effects on health.[60]. 

Substances like phthalates, dioxins, polybrominated biphenyls, and polychlorinated 

biphenyls have a role in influencing pubertal timing [61][62][63]. Exposure to flame 

retardants such as PBDEs also appears to affect puberty timing in girls, with effects 

depending on the timing of exposure [64][65][66].   

   Finally, nutritional conditions such as excess energy intake, macro/micronutrient 

imbalance and dietary styles can determine the early activation of the HPG axis [51]. Early 

and precocious puberty may occur when children continuously ingest naturally occurring 
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sex hormones from commercial food [67][68]. As a factor that can be modified, the impact 

of diet and nutrients on the timing of puberty onset is receiving significant attention. 

However, the results revealed an inconsistent correlation. Dietary patterns can trigger mild 

inflammation in the hypothalamus. This, in turn, activates microglia, releasing 

prostaglandins and neurotrophic factors that affect GnRH cells, potentially accelerating the 

onset of puberty. 

   Additionally, research indicates that fatty acids can stimulate the secretion of phoenixin, 

a neuropeptide that directly influences GnRH neurons. Therefore, the diet may promote 

phoenixin secretion, impacting GnRH neurons and potentially contributing to early 

activation of the GnRH system. On the other hand, phoenixin may also have a role in 

modulating neuronal inflammation [69][70][71]. Diets with high sugar and high-fat content 

tend to cause obesity in children and animals [72][73][74]. Rogers et al. [50] found that high 

meat intake predisposed girls to earlier menarche in Britain, while Wu et al. did not observe 

this positive correlation [75]. Similarly, there has been an ongoing debate regarding the 

impact of carbohydrate consumption on early menarche [46] [76]. Meanwhile, insulin 

resistance, via its obesity-inducing impact, is vital to advancing menarche onset [77].   

   Obesity is also a significant factor [78]. Research by Ferrari et al.[79] suggested that girls 

with a higher BMI were more susceptible to early menarche and breast development. 

Furthermore, an unstable family environment may also contribute to early puberty. From 

reported studies, it was noted that girls with a higher BMI (overweight and obesity) attained 

menarche early compared to those without excess weight [46][81].  

   Our focus group centres around the topic of nutrition, dietary endocrine disruptors and 

weight fluctuations, given the concurrent increase in obesity and precocious puberty among 

girls. 

 

Exposure Window 

   In humans, it is difficult to provide evidence of causal relationships between exposure and 

changes in pubertal timing. Additional issues include simultaneous exposure to small 

amounts of numerous chemicals, the time lapse between exposure to EDCs in early 

childhood, and the potential impact on the timing of puberty [82]. Research has demonstrated 

that early exposure to EDCs can immediately affect the formation of various cell types within 

the gonads or the development of the reproductive tract, depending on the specific EDC type, 

dose, and timing of exposure. Additionally, long-term effects may manifest in hormonal 

balance, somatic cell differentiation, gamete production, and gamete quality. [83][84].  

   Early exposure is a long-standing concern in the medical field. A fetus is highly susceptible 

to the environmental and maternal components surrounding a pregnancy [85]. Dr David 

Barker first popularised "the fetal basis of adult disease" [86]. Furthermore, it represents a 

complex and multifactorial idea of fetal origins of adult disease. It is hard to establish the 

developmental age at which exposure to advanced glycation end products (AGEs) is critical. 

Considering the latency from exposure is an essential factor, representing the time it takes 

for AGEs to show its effect. The remarkable impact of advanced glycated end products is 

due to the plentiful presence of AGE receptors on various tissue cell surfaces [87][88]. 

   Our research team aims to investigate the exposure windows that have the most significant 

effects on the relationship between nutrition, weight fluctuations, and pubertal development 

in girls, focusing on understanding the potential consequences of these exposures. 
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The changing patterns: delving into the shifting onset of puberty 

    

   The study of pubertal timing changes over the past centuries provides a fascinating glimpse 

into the evolving factors that have influenced the onset and progression of puberty in girls. 

Insights into this historical trend not only shed light on the impact of various environmental, 

nutritional, and social factors on pubertal development but also offer valuable perspectives in 

understanding the implications of these changes on overall health and well-being. The mean 

age of puberty appearance has decreased significantly over the last 100 years in Europe and 

worldwide.  

The mean age at menarche in the nineteenth century was approximately 17 years. A secular 

decrease in age at menarche between 1890 and 1960 was thought to be caused by improvement 

in nutritional and socio-economic status [89][90] 

   Several American and European studies have indicated an advancement in breast 

development in girls over the last 30 years [91][92][93]. Overweight/obesity rates have been 

dramatically increasing during the last 40 years in many European countries, exceeding 30% 

and 10% among children and adolescents [94]. The Pediatric Research in the US Office 

Setting (PROS) indicated that the timing of breast development in white American girls was 

advanced from 10.6 years in the 1930s-1940s to 9.96 years in 1992-1993 [95]. Some specific 

populations appear to show a high prevalence of precocious puberty (breast development 

before the age of 8 in girls). In Belgium and other developed countries, migrating children 

have a markedly increased risk of sexual precocity [90]. Such rapid evolution of 

developmental landmarks led to the hypothesis that puberty timing could be affected by 

exposure to environmental factors. 

The age of B2 among girls in Denmark was 9.86 years in 2006-2008, nearly a year earlier than 

the 10.88 years reported in 1992-1993 [91]. During the last 15 years, a 12-month decline in the 

mean age at the onset of breast development in Danish girls [91] has been found, while similar 

findings are reported in both Greek and Turkish populations [96][97] 

More recent data align with the trends as mentioned above, suggesting that the age distribution 

of pubertal signs is skewed towards earliness for initial pubertal stages and lateness for final 

pubertal stages [34] [57] 

   The prevalence of PP needs to be well-documented. The literature shows that girls' 

precocious puberty (PP) frequency ranges from 6.7% to 10.4% [98] [99]. Nevertheless, in the 

Danish population, a small percentage of girls (0.2%) and an even smaller percentage of boys 

(less than 0.05%) appeared to exhibit some PP [100]. Another study in Spain suggests that 

the annual occurrence of CPP ranges from 0.02 to 1.07 per 100,000 individuals. [101]. The 

most remarkable discovery is the decrease in the average age at which puberty begins. 

 

 

Nutrition Dynamics - Unlocking Flavor Alchemy 

The Maillard reaction and Advanced Glycation End Products (AGEs)  

 

   The Maillard reaction, commonly known as non-enzymatic browning, is an interaction 

between free amino groups of proteins and carbonyl groups of reducing sugars [102]. Maillard-

like reactions also occur in living organisms, and the products generated in vivo are named 

advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) [88]. 

The evolution of the Maillard reaction can be traced back to the top of culinary history. As our 

ancestors discovered the transformative effects of applying heat to food, they began to harness 

the Maillard reaction to enhance the sensory appeal of their meals. Over time, this process has 
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been honed and perfected by various cultures worldwide, developing diverse cooking 

techniques, flavour combinations, and culinary traditions. 

   The difference between the Maillard reaction during cooking at home and in mass production 

or ultra-processing lies primarily in the scale, control, and potential additives involved. When 

cooking at home, the Maillard reaction occurs on a smaller scale, allowing for more hands-on 

control over heat and ingredients. In contrast, mass production and ultra-food processing 

involve larger-scale operations with strict parameters and the potential for added preservatives, 

flavour enhancers, and other ingredients to achieve specific outcomes. This ultra-processing 

can result in differences in flavour, texture, and overall product quality between home-cooked 

and commercially processed items. 

   It is important to note that thermal processing time is directly correlated with the production 

of Maillard reaction products. According to studies by Ledl and Schleicher [103] and Poulsen 

et al. [88], increasing the process temperature by 10◦C can at least double the rate of the 

Maillard reaction. Furthermore, when using browning as an indicator for the progress of the 

reaction, it has been observed that approximately the same results in terms of browning are 

achieved within four weeks at 20◦C, 3 hours at 100◦C, and 5 minutes at 150◦C. These findings 

highlight the significance of temperature and time in influencing the Maillard reaction and its 

resulting products during thermal processing [103][88]. There is no clear consensus on how 

dietary Maillard reaction products may specifically affect human health. Diverse Maillard 

reaction products (MRPs) act as antioxidants, bactericidal, antiallergenics, antibrowning 

agents, prooxidants, and carcinogens. Most of these properties depend on food processing 

[104]. Still, high levels have been associated with potential health implications and lower 

nutritional quality due to the loss of essential and semi-essential amino acids 

[105][106][107][108].  

   The Western diet, abundant in heat-treated foods, offers a substantial daily intake of MRPs. 

The intricate nature of MRPs stems from the existence of various compounds at the initial, 

intermediate, and final stages. These compounds generate diverse flavours and aromas in 

processed foods [109] while diminishing their nutritional value, primarily by lowering protein 

digestibility [105]. This connection underscores the significance of MRPs in influencing the 

overall nutritional quality of food. The most important compounds are furosine, acrylamide, 

heterocyclic amines (HCAs), 5-Hydroxymethylfurfural (HMF), advanced glycation end 

products (AGEs) and melanoidins that are present in processed foods from animal and vegetal 

origins [105].  

   When proteins or fats interact with sugars, they form a collection of substances called 

advanced glycation end products (AGEs). The reaction mechanism of AGE formation by the 

Maillard reaction is mainly the formation of dicarbonyl compounds at Shiff’s base and 

Amadori Rearrangement Product stage [110][111]. Amadori and reactive dicarbonyls are early 

Maillard reaction products (AGEs precursors) formed from lysine residues [112]. 

   AGEs in humans come from two sources: external intake through the diet and internal 

formation within the body. The body's own production of AGEs is influenced by factors such 

as lower physiological temperatures and specific pathways like glycolysis. Unhealthy 

lifestyles, including sedentary behaviour and lack of exercise, also contribute to the formation 

of AGEs. [113],  smoking, and long-term alcohol intake [114][115][116]. Researchers have 

suggested that younger people are vulnerable to the effects of AGEs. Putte et al. [117] found 

that AGEs begin to accumulate in people as young as 20 years old and then seemingly increase 

steadily. 
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   Nutrition is an essential source of exogenous AGEs where thermally processed foods, 

especially lipid and protein-rich foods typical of Western-style diets, contain many toxicant 

AGEs. In standard diets, where proteins and lipids mixed with reactive sugars are routinely 

processed under elevated temperatures, such as broiling, roasting, or grilling, high oxidants 

such as AGEs are produced spontaneously [118]. Although the average total daily intake of 

AGEs in an adult’s regular diet is ∼1600 AGEs kU/d, consuming a diet high in heat-processed 

foods, sugar, and fats can increase the daily intake of AGEs to >200,000 Ku/d [119]. It was 

observed that dietary AGEs show interference with insulin, testosterone, estradiol, and 

progesterone activities. Additionally, it was demonstrated that AGEs can interfere with anti-

mullerian hormones and gonadotropins [120]. Moreover, AGEs affect adipose tissue and 

thyroid hormones and seem to play a crucial role in the development of type 2 diabetes (T2D) 

[121][122][123]. Regarding their mechanisms of action, direct or indirect interaction with 

hormonal receptors, disturbance of transport and delivery of hormones, and interference with 

specific signalling pathways have been discussed. However, the exact mechanisms behind the 

disruptive effects of AGEs appear to remain unclear [124]. Eating regimens low in dietary 

AGEs have been linked to noteworthy weight loss. They also led to reduced levels of leptin in 

the bloodstream and increased adiponectin, which further aid weight loss efforts and support 

long-term weight management [125]. Another study combining various research findings 

revealed that diets low in AGEs substantially reduced inflammatory markers like TNF‐α and 

8‐isoprostanes among healthy individuals [126]. Although many studies have been conducted, 

the connection between AGE properties and biological functions has yet to be conclusively 

established. 

   AGEs are categorised into fluorescent cross-linking AGEs (pentosidine and crossline), non-

fluorescent cross-linking AGEs (imidazolium lysine cross-links, alkyl formyl glycosyl pyrrole 

(AFGP) cross-links and arginine-lysine imidazole (ALI) cross-links), and non-cross-linking 

AGEs (pyrraline, carboxyethyl lysine (CEL) and carboxymethyl lysine (CML)) [127][128]. 

 

CML physiology and bioavailability 

 

   Nε-(carboxymethyl) lysine (CML), with the chemical formulation of C8 H16 N2 O4 and a 

molecular weight of 204.224 g/mol [129], was identified as the initial glycoxidation product in 

1985 by Dr. Ahmed during attempts to determine the primary compounds formed when glucose 

reacts with lysine in physiological conditions. CML can be produced in food and biological 

systems. Of the various pathways for CML formation documented in scientific literature, the 

primary ones include the conversion of fructosyl-lysine (an Amadori product) to CML through 

the AGE pathway, as well as the direct interaction of glyoxal, generated through lipid 

peroxidation, with the ε-amino group of lysine, resulting in CML formation through the ALE 

pathway [130][131]. Due to multiple formation pathways, CML is considered one of the 

predominant MR compounds in extensively heated foods and living organisms. CML is a 

valuable indicator of AGE accumulation in food products and animal and clinical research 

[132]. It is stated that there are two separate forms of dietary CML: the free form and the 

protein-bound form (covalently bonded with proteins and peptides) [133][134].  

   Multiple factors will influence the rate at which CML is absorbed, including its solubility 

following gastrointestinal digestion, molecular weight, and whether it is free or protein-bound 

[135]. It is stated that free CML is quickly absorbed due to its low molecular weight [136]. In 

contrast, protein-bound CML is thought to be very difficult to absorb due to insufficient 

degradation by gastrointestinal enzymes [88]. 
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CML and Diseases 

   Various mechanisms have been identified through which CML can lead to tissue damage. 

Following their ingestion, 10% remains in the circulation, and 2/3rds stay in the body and get 

incorporated covalently in tissues, ultimately leading to systemic and local insulin resistance 

(IR) as well as inducing mitochondrial dysfunction and reactive oxygen species (ROS) 

production [137]. AGEs stimulate proinflammatory cytokine synthesis and release, setting the 

stage for the sustained activation of innate immune responses by triggering transcriptional 

factors such as nuclear factor kappa B [138][139]. For instance, Cai et al. conducted a study 

where wild-type mice were given methylglyoxal-modified BSA (MG-BSA) as a precursor of 

AGEs for six months. Their research findings revealed a direct connection between MG-BSA 

consumption and the increased presence of oxidative stress markers [140]. Concurrently, 

insulin resistance was observed in four consecutive generations of mice on the same diet [121]. 

Dittrich and colleagues (58) examined how the delivery method affects CML levels in infants 

during the first three days after birth. They found that newborns delivered vaginally had urinary 

CML levels that were twice as high as those delivered by caesarean section (1306 vs. 601 ng 

mL−1), even though both groups were formula-fed. The authors concluded that during the first 

few days after birth, urinary CML excretion reflects endogenous oxidative stress rather than 

nutritional intake, suggesting that oxidative stress is likely higher during vaginal childbirth 

compared to caesarean delivery [141]. 

    Our understanding of how dietary advanced glycation end products (AGEs) contribute to the 

development of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) is not yet 

comprehensive. It is still being determined whether these conditions are influenced only by 

internally produced AGEs or if AGEs from our diet also play a part in their progression. The 

vital link between diabetes and advanced glycation end products (AGEs) is that high blood 

sugar levels increase glycation, especially in tissues that do not rely on insulin for glucose 

uptake. Prolonged hyperglycemia, the main symptom in patients with diabetes mellitus, 

dramatically accelerates the formation of advanced glycation end products (AGEs) generated 

from non-enzymatic glycation (NEG) of proteins and lipids. [142] [143]. Moreover, within the 

diabetes context, removing old or impaired proteins is impeded by the potential glycation of 

the enzymes involved. This glycation diminishes the efficiency of protein breakdown 

mechanisms, causing a slowed or reduced protein turnover and, consequently, contributing to 

the buildup of CML (carboxymethyllysine) [144]. In a study by Hofmann et al. involving 

insulin-resistant db/db mice (a model of type 2 diabetes) fed either a high or low-AGE diet for 

20 weeks, it was observed that the progression of diabetes worsened with higher dietary AGE 

levels. The AGE-rich diet resulted in a twofold increase in serum CML and methylglyoxal 

concentrations and elevated body weight gain [145]. People with diabetes mellitus and 

cardiovascular disease are estimated to have an average daily intake of CML at approximately 

3.1 mg [146][107]. In a meta-analysis of 18 manuscripts, Jalil et al. observed significantly 

higher circulating AGEs (CML and MG-H1) only in subjects with obesity with at least one 

component of metabolic syndrome versus normal weight individuals, whereas no significant 

difference among AGE concentrations of individuals with obesity without any metabolic 

syndrome components versus normal weight individuals. The authors suggested that in 

individuals with obesity with one metabolic syndrome component, there were also higher 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512899/
https://www.ahajournals.org/doi/10.1161/01.RES.0000103862.26506.3D
https://www.pnas.org/doi/full/10.1073/pnas.242407999
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475771/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465382/
https://pubmed.ncbi.nlm.nih.gov/16939359/
https://pubmed.ncbi.nlm.nih.gov/14661090/
https://pubmed.ncbi.nlm.nih.gov/11525872/
https://www.sciencedirect.com/science/article/abs/pii/S0003986102002229?via%3Dihub
https://diabetesjournals.org/diabetes/article/51/7/2082/34509/Improved-Insulin-Sensitivity-Is-Associated-With
https://www.sciencedirect.com/science/article/abs/pii/S0026265X20305907?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1568163718301193?via%3Dihub


სამეცნიერო ჟურნალი ს პ ე ქ ტ რ ი 2024. 9(1) 

 

 

circulating amounts of inflammatory factors, including leptin, tumour necrosis factor (TNF)-a, 

and receptor for the advanced glycation end product (RAGE) that promote deteriorating effects 

of AGE in metabolic syndrome-prone patients with obesity. [147]. The results of a study by 

Semba et al. suggested a reverse relationship between fat mass and serum CML levels. The 

authors proposed two possible explanations for this association: first, fat tissue stores CML 

selectively; second, adipocytes (fat cells) could potentially impact the metabolism of AGE 

(advanced glycation end products), which leads to the production of CML [148].In this context, 

the presence of CML in the bloodstream does not accurately represent the overall amount of 

CML present in the entire body. 

   Diet plays a significant role in fertility, even if one is not obese, and specific nutrients seem 

to have a more pronounced impact on reproductive well-being [149]. The study by Tatone et 

al. revealed that consuming dietary AGEs is associated with a more extended non-ovulatory 

phase, known as the diestrus phase, and disruptions in the production and development of 

hormones and follicles in the ovaries, regardless of obesity. The accumulation of AGEs in the 

ovaries hinders follicle development and negatively affects eggs' maturity, growth, and 

chromosomal composition within the ovaries [150]. 

 

CML and Diet.  

 

   Several studies investigated the existence of CML in food, such as those carried out by 

Goldberg et al.[150] and Uribarri et al.[151]. A more recent study by Hull et al. [130] analysed 

257 commonly consumed food items in the Western-style diet. The query pertains to the degree 

of impact that dietary CML may have on the potentially significant contribution to the 

progression and severity of the disease. 

   Numerous studies have underscored the significance of considering an individual's health 

status (whether healthy, with or without T2DM, or with CVD) when analysing the significance 

of dietary advanced glycation end products (AGEs) on disease risk markers [153][154][155]. 

These studies highlight that the effects of dietary AGEs can vary depending on a person's 

specific health condition, further emphasising the need for personalised assessments in 

understanding the relationship between dietary AGEs and disease risk markers. 

   In a research investigation focused on improving insulin resistance in individuals with type 

2 diabetes through dietary restriction of glycation products, findings indicated that patients with 

type 2 diabetes exhibited notably elevated fasting blood glucose levels and increased serum 

concentrations of CML and the dicarbonyl methylglyoxal compared to nondiabetic, healthy 

control individuals before the intervention. Following a 50% reduction in dietary advanced 

glycation endproducts (AGEs), the diabetic subjects displayed reduced serum CML and 

methylglyoxal levels and diminished intracellular methylglyoxal levels compared to their pre-

intervention levels [156]. Research demonstrates that adopting a diet restricted in advanced 

glycation end products can reduce serum advanced glycation end product levels among 

individuals and vice versa [157][158][159]. Similarly, dietary CML significantly increases 

circulating CML levels[130]. Ingestion of a Western-style diet is associated with ovarian 

dysfunction [160][161] that leads to diminished ovarian reserve [162], mitochondrial 

dysfunction [162], abnormal menstrual cycle length [163], anovulation, abnormal uterine 

bleeding, endometrial hyperplasia/cancer, and subfertility [164][165]. The Mediterranean diet 

is linked to increased chances of clinical pregnancy and live births in young women. In contrast, 

a Western-style diet negatively affects fertility and glucose tolerance in macaques, regardless 

of obesity and diabetes [149][166]. 
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   Recent research conducted by the International Agency for Cancer Research [167] has 

categorised red meats as Group 2, indicating they are probably or possibly carcinogenic. In 

contrast, processed meats fall under Group 1, signifying a higher level of carcinogenicity. The 

report underscores a key finding: the potential to mitigate the presence of compounds such as 

carboxymethyl lysine [168].  

   Additionally, these diets catalyse the transition from healthy obesity to unhealthy obesity. 

Therefore, ensuring proper regulation of advanced glycation end (AGE) levels in our food is 

significant. 

 

Tools of detection CML 

 

   The nature of samples and the complexity of food matrices make analysing CML in blood 

and food challenging due to variability in content and analytical approaches. Factors such as 

cooking methods and processing techniques can significantly impact CML levels, leading to 

difficulty in obtaining consistent measurements. The complex food composition also makes 

separating CML from other components technically challenging and may affect result 

reliability. 

   Establishing reliable standards and reference materials for CML detection in blood and food 

is essential for ensuring accurate and comparable results across different studies and 

laboratories. However, the need for widely accepted standards can make comparing data 

obtained from diverse sources complex. 

   CML levels can be quantified using GC-MS or ELISA [169]. Additionally, commercially 

available AGE assay kits often come with their standard curves for quantitative analysis.  

Uribarri et al. significantly advanced by creating a comprehensive database of food products 

and their concentrations of advanced glycation end products (AGEs), utilising CML levels 

measured through ELISA [152]. Our team investigated several studies evaluating AGEs and 

their precursors using either in vitro, animal or human-based models.  

 

Addressing Gaps in Understanding the Impact of CML Intake on Pre-Pubertal Girls 

Proposals for research 

 

Our narrative review encompassed studies involving experiments and research on the impact 

of carboxymethyl-lysine. Our study team intends to calculate the approximate carboxymethyl-

lysine intake by the pre-pubertal girls (aged 4-8) with a 24-hour dietary recall method to 

emulate this dietary intake pattern in a preclinical model to simulate a child's nutritional intake 

from birth to pre-maturation. This approach will enable us to assess the isolated impact of 

Carboxymethyl-Lysine on pubertal timing, eliminating the influence of other potential 

environmental or dietary endocrine disruptors. The selection of female children is predicated 

on the higher incidence of early sexual maturation in girls than in boys [170]. Based on the 

information provided, we propose that dietary modifications to reduce advanced glycation end 

products (AGEs) may have potential implications for addressing precocious puberty in girls. 

Although it is challenging to modify multiple endocrine disruptors and genetic predispositions, 

exploring subtle nuances in modifiable factors such as nutrition may significantly impact the 

prevention and management of sexual precocity. 

   Moreover, we investigate the potential significance of altering cooking methods and 

implementing targeted nutritional interventions as pivotal factors that could substantially 

impact pubertal timing shifts. Exploring the impact of Carboxymethyl-lysine on sexual 
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maturation may provide a targeted connection between cooking methods and food processing 

concerning sexual development, thereby serving as a catalyst for motivating parents and 

children to consider nutritional interventions on par with pharmaceutical and lifestyle 

interventions. 
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