Г. Н. ТАВДГИРИДЗЕ

ВЛИЯНИЕ ФОРМ АЗОТНЫХ УДОБРЕНИЙ НА БИОХИМИЧЕСКИЙ СОСТАВ ПЛОДОВ МАНДАРИНА УНШИУ

В субтронической зоне Грузии среди цитрусовых культур, в связи со сравнительно высокой морозостойкостью и урожайностью, наиболее распространен мандарин Уницу.

Из литературных источников известно, что среди цитрусовых мандарин является наиболее древней культурой. В субтропических странах Азии до нашей эры он представлял собой один из основных десертных фруктов (В. П. Алексеев, 1954). В нашу страну мандарин Уншиу был завезен и разведен в конце прошлого века в Чаквинском удельном имении. Плоды мандарина используются в основном в свежем виде в качестве дессертного фрукта, а небольшое их количество перерабатыв вается промышленностью.

Запросы потребителей на цитрусовые плоды изо дня в день возрастают.

В связи с этим в цитрусоводстве большое внимание уделяется повышению урожайности и улучшению сортового состава насаждений. В центре внимания находятся также вопросы биохимического изучения плодов.

Качественные показатели мандариновых плодов в связи с режимом питания почвы изучены ТІ. Гигинеишвили (1955), М. Бзиава (1949). П. Бендриковой (1954), И. Гамкрелидзе (1969), Г. Сарджвелавсе. А. Бурчуладзе (1973) и дгугими. По их данным, рациональное применение удобрений увеличивает урожай и не ухудшает биохимических показателей продукции. Однако, в этих исследованиях мало освещено влияние форм и доз азотных удобрений на качественные показатели плодов мандарина в условиях влажных субтропиков (Аджария).

Черноморское побережье Аджарии характеризуется типичными красноземными почвами и влажным субтропическим климатом. 63—70% производимых в Грузии цитрусовых плодев приходится на Аджарию. Поэтому Аджария является одним из крупных очагов производства цитрусовых плодов в нашей стране. В общей системе удобрений мандария наибольшие потребности проявляет в азоте. Поэтому изучение влияния форм и доз азотных удобрений на биохимические показатели пло-

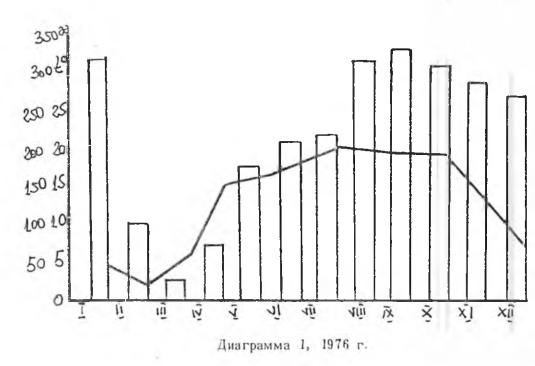
^{1/}Алексеев В. П. Мадарин. Бюллетень ВНИИЧиСК №1; 1954 г.

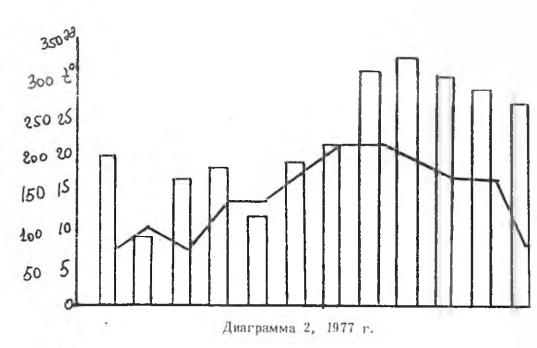
дов мандарина в условиях влажных субтропиков Аджарии имеет весьма важное значение.

По данным В. В. Воронцова и Л. И. Арешкиной (1936), первые опыты на плантациях мандарина Уншиу по установлению потребности в минеральных удобрениях были заложены М. Таблиашвили в 1931 году в Чаквинском совхозе как на полносборных, так и на молодых плантациях. Из азотных удобрений был применен сульфат аммония совместно с фосфором и калием, а биохимические показатели плодов мандарина были изучены В. В. Воронцовым в 30—ые годы в образцах, взятых на опытном участке М. Таблиашвили.

Влияние форм и доз азотных удобрений на урожайность и биохимический состав плодов мандарина изучалось нами в полевых и лабораторных условиях. Опыт был заложен Ш. А. Путкарадзе в типичном регионе влажных субтропиков — в колкозе Ахалсопели Хелвачаурского района, через три года после закладки плантаций — в 1969 году по следующей схеме: 1—Без удобрения; П-РК + СаО по агроправилам (фон): Щ-Фон + аммиачная селитра (N одна доза); 1V-Фон + мочевина (N одна доза); V-Фон + мочевина формальдегидное удобрение (N одна доза); V1-Фон + мочевина — формальдегидное удобрение (N две дозы); V11-Фон + сульфит аммония (N одна доза). Повторность опыта четырехкратная. На каждой делянке по шесть растений и по одному защитному дереву.

При одинарной дозе подразумевается внесение на одно дерево 100 грамм азота в переводе на чистый элемент, а двойная доза составляет 200 г азота. Первый сбор плодов на упомянутом участке был проведен в 1970 году, а биохимический состав изучался с 1972 года. В настоящей статье приводятся данные за 1976—1977 гг. с учетом климатических факторов.


Климатические данные взяты по сведениям Чарнальской метеостанции...


От климатических условий во многом зависят растворимость азотных удобрений, размещение растений, рост влодов, сроки их созревания и др. Как явствует из диаграмм (рис. 1 и 2), атмосферных осадков было сравнительно меньше в 1976 году — 2314 мм, а среднегодовая температура воздуха достигает 12,8°C. В 1977 году годовая сумма атмосферных осадков составила 2562 мм, а среднегодовая температура воздуха — 13,4°C. Сравнительно высокая температура, которая цитрусовым не требовалась, отмечалась в зимний период. В сентябре — ноябре, когда происходит рост и созревание плодов, в 1976 году осадков выпало па 139 мм меньше, нежели в 1977 году, а средняя температура воздуха была па 1,3°C выше. Большим было также число солвечных двей.

Вольшинство исследователей главным фактором, определяющим качество илодов, считает гармоничное сочетание в соке кислотности, витамина -C = сахаристости.

В ноябре со всех вариантов в среднем собирали более 90 штук плодов, поскольку к этому периоду плоды достигают технической эре-лости.

Как видно из таблицы, титруемая кислотность в пересчете на ли-

Влияние различных азотных удобрений на состав сока мандариновых плодов по данным за 1976 — 1977 годы (содержание на 100 мл сока)

Варианты опыта	Сухое вещество,	Н	Титруемая кислотность,	Витамин, мг	Обшие са- хара, г	Монозы,	Дисаха- риды»
Без упобрения			1976 год				
	11.0	1	0.1	35.9	8,64	2.52	6.12
(ноф) С	12.0	1	1,20	35, 4	9,91	3,24	6.87
,NO ₂ (N-1 доза)	10,6	.1			7,22	2,40	4,82
фон + CONH, (N-1 доза)	10,8	1	1, 10	38, 2	7,54	2,04	6,50
DV (N-1 403a)	12,0	1	1,10		7,31	2,04	5, 27
Фон + МФУ (N-2 дозы)	11,0	1	1, 10	37,8	6,61	2, 28	4,33
	10,8	1	1, 10	43, 1	6,35	1,92	4,43
		S	1977 год	I			
Без удобрения	10,7	4,10	0,87	35, 3	7,84	2,94	4,90
(ноф) С	11,0	4, 15	0,80	37,0	8, 45	2,28	6,17
Фон+ NH, NO, (N-1 доза)	10,8	4, 10	0, 89	31,8	7, 12	2, 22	4,90
NHo (N-1 4038)	10.6	4, 15	96.0	35,8	7,52	2,52	5,00
CONT NON (N-1 1038)	11,0	3,80	1,07	36, 6	7, 48	2, 28	5, 20
Фон+МФУ (N-2 дозы)	10,8	3, 80	1,09	35,0	96*9	2,52	4,44
		4,05	1,00	37,8	7,85	3, 12	4,73

монную кислоту в 1976 году на вариантах с формами азотных удобрений одинакова, составляя 1,1 грамма на 100 мл сока. На соответствующих вариантах в 1977 году кислотность колебалась в пределах 0,89-1,09 грамма.

По данным А. И. Самарского (1938), наличие в цитрусовых плодах высокой кислотности и яизкое содержание окислительных ферментов придают витамину С большую устойчивость при хранении и консервировании. Поэтому исследователь считает цитрусовые плоды одними из главных источников витамина С. Вообще взрослому человеку в день требуется 50-75 мг витамина С, а при тяжелой физической работе погребность в нем возрастает.

По данным наших исследований (см. таблицу), в 1976 году держание витамина С на всех вариантах с азотными удобрениями выше, нежели на неудобренном и фоновом вариантах, колеблясь в пределах 36,8-43,1 мг. На варианте с применением одинарной дозы азота мочевиноформальдегидного удобрения и сульфата аммония содержание витамина С в плодах составляет 43,1 мг, а на варманте с мочевиной - 38,3 мг. В 1977 году на всех вариантах с аэотными удобрениями содержание витамина С меньше, нежели в 1976 году, составляя 31.8-37.8 мг, а на неудобренном варианте такое же, что вызвано избытком осадков в вегетационный период, особенно в период роста и созревания, более низкими температурой воздуха и суммой активных температур. Вообще, по мере увеличения возраста плантации на вариантах с формами авотных удобрений содержание витамина С возрастает. По данным П. Л. Гигинейшвили (1945) , в условиях Абхазии при применении на фоне РК двойной и тройной доз сульфата аммония содержание в плодах витамина С по сравнению с фоном возрастает и составляет 24,9-32,8 мг.

При оценке качественных показателей цитрусовых плодов большое эначение имеют общая сахаристость и органолептические показатели плодов. Вообще сахаристость и кислотность должны сочетаться между собой. Плод должен быть кисловато —сладкого вкуса. В 1976 году сахаристость оказалась выше на фоновом и неудобренном вариантах. На вариантах азотных удобрений сахаристость выше при применении одинарной дозы азота мочевины и мочевиноформальдегидного удобрения (см. таблицу), а на варианте с сульфатом аммония она виже, что следует считать закономерным, В 1976 и 1977 годы на вариантах с формами азотных удобрений общая сахаристость была почти одинаковой и лишь на варианте с сульфатом аммония в 1977 году она выше, нежели в 1976 году, составляя 7,85 грамма. Такова же динамика содержания сахарозы по вариантам. Из вариантов с формами азотных удобрений в каждом году большая сахаристость плодов имеет место на вариантах с одинарном дозой азота мочевины и мочевино—формаль-

 $^{1/\}Gamma$ игинеишвили П. Л. Влияние азотных и фосфорных удобрений на качество плодов мандарина. Бюллетень ВНИИЧиСК \$1-2, 1945 г.

дегидного удобрения. На упомянутых вариантах наблюдаются также лучший рост и механический состав плодов.

問い日の日は日

Применение аэотных удобрений вызывает увеличение урожая и не ухудшает биохимических полазателей плодов мандарина по сравнению с неудобренным и фоновым вариантами. Оптимальние атмосферные осадки, средние температура воздуха и сумма активных температур опособствуют значительному повышению общего содержания витамина С и сахара в плодах на вариантах со всеми формами азотных удобрений. Наилучшие результаты дает применение азота мочевины и мочевино—формальпетидного удобрения.