Abstract
Parkinson’s disease (PD), a progressive neurodegenerative disorder, is increasingly recognized as a disorder of accelerated cellular aging, driven by telomere shortening, cellular senescence, mitochondrial dysfunction, and chronic neuroinflammation. Central to its pathophysiology is the accumulation of α-synuclein aggregates, which trigger astrocyte and microglial senescence, leading to the secretion of pro-inflammatory SASP factors and creating a toxic neural microenvironment. These processes are tightly interwoven with mitochondrial impairment and the generation of reactive oxygen species (ROS), which accelerate telomere attrition and perpetuate neuronal loss through a self-reinforcing feedback loop. Dysregulation of key molecular regulators such as telomerase reverse transcriptase (TERT), GBA mutations, and the SATB1-miR22 axis further exacerbate lysosomal dysfunction, senescence, and α-synuclein accumulation. TERT, though neuroprotective when upregulated, is often downregulated in PD, while GBA mutations impair autophagy and contribute to a senescence-like phenotype in dopaminergic neurons. The SATB1-miR22-GBA network links epigenetic regulation to lysosomal failure and cellular aging. These interconnected mechanisms illuminate a multifactorial model of PD pathogenesis where senescence and telomere instability serve as central hubs. Therapeutic strategies targeting telomerase activation, clearance of senescent cells via senolytics, and modulation of the GBA/SATB1-miR22 pathway represent promising avenues for mitigating neurodegeneration and improving clinical outcomes in aging-related neurodegenerative diseases such as PD.v
References
Andersen, J. K., & Chinta, S. (2016). Parkinson’s Disease and Aging. In F. Sierra & R. Kohanski (Eds.), Advances in Geroscience (pp. 229–255). Springer International Publishing. https://doi.org/10.1007/978-3-319-23246-1_8
Asghar, M., Odeh, A., Fattahi, A. J., Henriksson, A. E., Miglar, A., Khosousi, S., & Svenningsson, P. (2022). Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson’s disease and Lewy body dementia. Scientific Reports, 12(1), 17578. https://doi.org/10.1038/s41598-022-22400-z
Azam, S., Haque, Md. E., Balakrishnan, R., Kim, I.-S., & Choi, D.-K. (2021). The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Frontiers in Cell and Developmental Biology, 9, 683459. https://doi.org/10.3389/fcell.2021.683459
Chesnokova, A. Yu., Ekimova, I. V., & Pastukhov, Yu. F. (2019). Parkinson’s Disease and Aging. Advances in Gerontology, 9(2), 164–173. https://doi.org/10.1134/S2079057019020085
Harackiewicz, O., & Grembecka, B. (2024). The Role of Microglia and Astrocytes in the Pathomechanism of Neuroinflammation in Parkinson’s Disease—Focus on Alpha-Synuclein. Journal of Integrative Neuroscience, 23(11), 203. https://doi.org/10.31083/j.jin2311203
Jugal Kishore, B., & Dunuwila, T. S. (2025). Investigating Neurodegenerative Disorders: Understanding the Complexity of Brain Degeneration. In S. K. Mathivanan, S. Mallik, S. K. B. Sangeetha, B. O. Soufiene, & S. Srinivasan (Eds.), Advances in Medical Education, Research, and Ethics (pp. 189–238). IGI Global. https://doi.org/10.4018/979-8-3693-5464-3.ch008
Kolyada, A. K., Vaiserman, A. M., Krasnenkov, D. S., & Karaban’, I. N. (2016). Studies of Telomere Length in Patients with Parkinson’s Disease. Neuroscience and Behavioral Physiology, 46(3), 344–347. https://doi.org/10.1007/s11055-016-0239-4
Kritsilis, M., V. Rizou, S., Koutsoudaki, P. N., Evangelou, K., Gorgoulis, V. G., & Papadopoulos, D. (2018). Ageing, Cellular Senescence and Neurodegenerative Disease. International Journal of Molecular Sciences, 19(10), 2937. https://doi.org/10.3390/ijms19102937
Kumthekar, P., Ko, C. H., Paunesku, T., Dixit, K., Sonabend, A. M., Bloch, O., Tate, M., Schwartz, M., Zuckerman, L., Lezon, R., Lukas, R. V., Jovanovic, B., McCortney, K., Colman, H., Chen, S., Lai, B., Antipova, O., Deng, J., Li, L., … Stegh, A. H. (2021). A first-in-human phase 0 clinical study of RNA interference–based spherical nucleic acids in patients with recurrent glioblastoma. Science Translational Medicine, 13(584), eabb3945. https://doi.org/10.1126/scitranslmed.abb3945
Lee, H.-J., Kim, C., & Lee, S.-J. (2010). Alpha‐Synuclein Stimulation of Astrocytes: Potential Role for Neuroinflammation and Neuroprotection. Oxidative Medicine and Cellular Longevity, 3(4), 283–287. https://doi.org/10.4161/oxim.3.4.12809
Levstek, T., Redenšek, S., Trošt, M., Dolžan, V., & Podkrajšek, K. T. (2021). Assessment of the Telomere Length and Its Effect on the Symptomatology of Parkinson’s Disease. Antioxidants, 10(1), 137. https://doi.org/10.3390/antiox10010137
Maeda, T., Guan, J. Z., Oyama, J. -i., Higuchi, Y., & Makino, N. (2009). Aging-Associated Alteration of Subtelomeric Methylation in Parkinson’s Disease. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(9), 949–955. https://doi.org/10.1093/gerona/glp070
Manavi, Z., Gross, P., Baydyuk, M., & Huang, J. (2024). 337 Cellular senescence contributes to inflammation and disease progression in an animal model of multiple sclerosis. Journal of Clinical and Translational Science, 8(s1), 102–102. https://doi.org/10.1017/cts.2024.301
Ortega-Vázquez, A., Sánchez-Badajos, S., Ramírez-García, M. Á., Alvarez-Luquín, D., López-López, M., Adalid-Peralta, L. V., & Monroy-Jaramillo, N. (2023). Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease. Genes, 14(10), 1913. https://doi.org/10.3390/genes14101913
Patel, B., Taiwo, R., Kim, A. H., & Dunn, G. P. (2020). TERT, a promoter of CNS malignancies. Neuro-Oncology Advances, 2(1), vdaa025. https://doi.org/10.1093/noajnl/vdaa025
Patel, M., & McElroy, P. B. (2017). Mitochondrial Dysfunction in Parkinson’s Disease. In R. Franco, J. A. Doorn, & J.-C. Rochet (Eds.), Oxidative Stress and Redox Signalling in Parkinson’s Disease (pp. 61–96). The Royal Society of Chemistry. https://doi.org/10.1039/9781782622888-00061
Polissidis, A., Nikolopoulou, G., Koronaiou, E., Nikatou, M., Viel, C., Boyongo, M., Pablo Sardi, S., Xilouri, M., Vekrellis, K., & Stefanis, L. (2021). A double-hit in vivo model of GBA1 viral microRNA-mediated downregulation and human alpha-synuclein overexpression demonstrates nigrostriatal degeneration. https://doi.org/10.1101/2021.06.23.449545
Rather, G. A., Mathur, V., Riyaz, M., Yadav, R., Nanda, A., Siddiqui, A. J., Rather, M. A., Khan, A., & Jahan, S. (2024). Mitochondrial Dysfunction and Its Role in Neurological Disorders. In A. Khan, M. A. Rather, & G. M. Ashraf (Eds.), Mechanism and Genetic Susceptibility of Neurological Disorders (pp. 299–315). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-9404-5_13
Ravenhill, S. M., Evans, A. H., & Crewther, S. G. (2023). Escalating Bi-Directional Feedback Loops between Proinflammatory Microglia and Mitochondria in Ageing and Post-Diagnosis of Parkinson’s Disease. Antioxidants, 12(5), 1117. https://doi.org/10.3390/antiox12051117
Russo, T., Kolisnyk, B., B. S., A., Plessis‐Belair, J., Kim, T. W., Martin, J., Ni, J., Pearson, J. A., Park, E. J., Sher, R. B., Studer, L., & Riessland, M. (2024). The SATB1‐MIR22‐GBA axis mediates glucocerebroside accumulation inducing a cellular senescence‐like phenotype in dopaminergic neurons. Aging Cell, 23(4), e14077. https://doi.org/10.1111/acel.14077
Schöndorf, D. C., Aureli, M., McAllister, F. E., Hindley, C. J., Mayer, F., Schmid, B., Sardi, S. P., Valsecchi, M., Hoffmann, S., Schwarz, L. K., Hedrich, U., Berg, D., Shihabuddin, L. S., Hu, J., Pruszak, J., Gygi, S. P., Sonnino, S., Gasser, T., & Deleidi, M. (2014). iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nature Communications, 5(1), 4028. https://doi.org/10.1038/ncomms5028
Verma, D. K., Seo, B. A., Ghosh, A., Ma, S.-X., Hernandez-Quijada, K., Andersen, J. K., Ko, H. S., & Kim, Y.-H. (2021). Alpha-Synuclein Preformed Fibrils Induce Cellular Senescence in Parkinson’s Disease Models. Cells, 10(7), 1694. https://doi.org/10.3390/cells10071694
Wang, Y., Kuca, K., You, L., Nepovimova, E., Heger, Z., Valko, M., Adam, V., Wu, Q., & Jomova, K. (2024). The role of cellular senescence in neurodegenerative diseases. Archives of Toxicology, 98(8), 2393–2408. https://doi.org/10.1007/s00204-024-03768-5
Wissler Gerdes, E. O., Zhu, Y., Weigand, B. M., Tripathi, U., Burns, T. C., Tchkonia, T., & Kirkland, J. L. (2020). Cellular senescence in aging and age-related diseases: Implications for neurodegenerative diseases. In International Review of Neurobiology (Vol. 155, pp. 203–234). Elsevier. https://doi.org/10.1016/bs.irn.2020.03.019
Zhang, P., & Sung, M.-H. (2022). Cellular senescence in neurodegenerative diseases. In Cellular Senescence in Disease (pp. 363–381). Elsevier. https://doi.org/10.1016/B978-0-12-822514-1.00012-2

