

Comprehensive Review of MPox: Critical Evaluation of Outbreak Trends, Clinical Manifestations, and Therapeutic Approaches

Harsahaj Singh Wilkhoo,^{1,4} Afra Wasama Islam,^{1,4} Johora Akter,^{1,5} Sharel Kaithathara,² Samreen Rizwan Sheikh,³ Rashi¹

¹Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia

²Faculty of Medicine, New Vision University, Tbilisi, Georgia

³Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

⁴Executive Board, ClinNova International, Tbilisi, Georgia

⁵Board of Directors, ClinNova International, Tbilisi, Georgia

**Corresponding author:* Harsahaj Singh Wilkhoo, Faculty of Medicine, Tbilisi State Medical University; Founder and Director, ClinNova International, Vazha Pshvela Avenue Tbilisi, Georgia, Postal code- 0162; ORICD- 0009-0000-2943-6404, sahajwilkhoo@clinnovainternational.com, +995-599465192

Abstract

The monkeypox virus (MPV) is the cause of monkeypox, a zoonotic viral illness that has become a major worldwide health issue because of its changing epidemiology, increased human-to-human transmission, and potential for large-scale outbreaks. The disease has mostly been endemic in Central and West Africa since it was first discovered in humans in 1970. The recent epidemics in 2022 and 2024, however, highlight how urgently a thorough grasp of its clinical presentations, diagnostic techniques, and treatment measures is needed. The severity of this illness varies according to the host's immune status, although it usually manifests as fever, lymphadenopathy, and a progressive rash. Immunocompromised people are more susceptible to serious side effects, such as bacterial superinfections, pneumonia, and encephalitis, even though the majority of cases resolve on their own. Men who have sex with men (MSM) were the majority of those infected by the 2022 outbreak, indicating possible sexual transmission. The primary methods of diagnosis are histopathological analysis and polymerase chain reaction (PCR)-based testing that targets conserved MPV genes. Vaccination programs and antiviral medications are essential for controlling outbreaks. The reappearance of monkeypox calls for better public health preparedness, faster diagnostic capabilities, and more surveillance. Future studies should concentrate on tailored antiviral treatments, next-generation vaccinations, and novel diagnostic techniques based on nanotechnology. To minimize

future outbreaks and keep monkeypox from becoming a persistent worldwide danger, a coordinated, interdisciplinary strategy is essential.

Abbreviations

DRC- Democratic Republic of Congo, EMA-, EOC- Emergency Operations Center, FDA- food and Drug Administration, FFP2- filtering facepiece, Monkeypox- monkeypox, MPV- monkeypox virus, MSM- men who have sex with men, MVA- modified vaccinia Ankara, PPE- personal protection equipment, PHEIC- public health emergency of international concern, PCR- polymerase chain reaction, RRT-rapid response team

Keywords: Monkeypox, virus, vaccines, antiviral therapy, orthopoxvirus

Introduction

Monkeypox is a zoonotic viral disease, affecting humans and animals. It was first isolated from primates in the year 1958. Later, the first human case of monkeypox was detected in the year 1970, from the Republic of Congo [1]. Monkeypox virus, a double-stranded DNA virus is similarly related to other viruses of the family *Poxviridae*, *Orthopoxvirus* genus, including variola virus (which causes smallpox), vaccinia virus (the primary component of the smallpox vaccine), and cowpox virus [2]. At the nucleotide level, research has demonstrated that any two orthopoxviruses share 96% of their core genomes [3]. The similarities between these viruses, however, are easiest to comprehend through common clinical aspects of illness. Both smallpox and monkeypox present as fevers and skin lesions that grow from vesicles to pustules, although monkeypox is usually more confined, less severe, and self-limiting. Due to the disease's unexpected worldwide spread outside of historically endemic African countries and the necessity for international cooperation to combat this previously ignored illness, the World Health Organization (WHO) proclaimed monkeypox a Public Health Emergency of International Concern in July 2022 [4]. A study suggests that males are more prone to contract infection than females; this is due to sex steroid hormones that affect infection-resistance genes in addition, to the androgenic inhibiting effect on immunity [5]. The 2022 epidemic often manifests as a systemic sickness with fever, myalgia, and a distinctive rash that includes papules that develop into vesicles, pustules, and crusts in the vaginal, anal, or oral areas. The incubation period for this outbreak is seven to ten days [6]. Additionally, there has been a surge in the occurrence and severity of monkeypox among immunocompromised people, such as those with AIDS. Atypical observations of more than 100 cutaneous lesions, necrotic or treatment-resistant lesions, hemodynamic instability, or subsequent sepsis are among the reports of severe monkeypox in this population [7]. There are now two recognized viral clades: the West African and Central African (Congo Basin) clades. Compared to West African viruses, those from Central Africa are more virulent [8].

The Central African variant of human monkeypox illness was linked to increased viremia, mortality, morbidity, and human-to-human transmission during the 2003 U.S. outbreak [9]. According to reports, the West African haplogroup (4%) has a lower death rate than the central African clade (10%), which is said to be more severe [10].

The objective of this review is to comprehensively study and summarize the available data on monkeypox including epidemiological trends, modes of transmission, characterize the clinical features, diagnostic techniques, treatment strategies, and public health interventions that will aid in the management of this disease during this crucial timeframe.

Epidemiology of Monkeypox

Monkeypox, caused by the monkeypox virus (MPV), is a zoonotic illness that caused widespread concern due to its shifting incidence and transmission patterns. As mentioned earlier, first isolated from laboratory monkeys in Denmark in the late 1950s, it was identified as a human pathogen in the 1970s in the Democratic Republic of the Congo. Ever since, it has generally affected mainly African countries such as Benin, Cameroon, Nigeria, and the Central African Republic. The virus is divided into two clades: Central African (Clade I) and West African (Clade II). It is further divided into subclades with clade I divided into subclades Ia and Ib and clade II divided into subclades IIa and IIb [11,12]. The scientific investigations indicate that the epidemic of 2022 was attributed to clade II, specifically subclade IIb. Since its discovery, the epidemiology of monkeypox has evolved considerably, with Clade I initially being the most common strain, causing recurrent outbreaks in the Democratic Republic of the Congo. Clade II, on the other hand, was very uncommon until its resurgence in Nigeria in 2017, indicating a significant change in the disease's transmission trends. The resurgence of Clade II in Nigeria in 2017 was notable for a significant shift from zoonotic to human-to-human transmission, including potential sexual spread. The 2022 global outbreak, the first significant transmission outside of Africa, resulted in approximately 85,000 confirmed cases in at least over 100 nations. The rise in instances coincided with a decrease in smallpox vaccination rates and the end of vaccination programs that had previously given cross-protection against orthopoxviruses, including monkeypox [11,13–15]. In the year 2003, the United States witnessed its first outbreak. This was seen to have involved over 70 cases in six states and was traced back to pet prairie dogs who had gotten the virus from African rats. It was observed that prairie dogs living with these rodents were the source of transmission. Subsequent occasional instances linked to travel from endemic areas have been documented. For example, in 2021, a monkeypox patient in the United States had recently traveled from Nigeria, highlighting the persistent potential of imported cases. Transmission of monkeypox occurs through various modes. Animal-to-human transmission happens via direct contact with infected animals or bushmeat. Human-to-human transmission can occur through direct contact with infectious sores or body fluids, and indirectly via contaminated materials like clothing or linens. Respiratory secretions may also play a role, though less is known about this route. Other transmission routes include vertical transmission from mother to fetus, and percutaneous inoculation through needlestick injuries or during tattooing [12,16–20].

The 2022 outbreak primarily impacted males who have intercourse with other men (MSM), which contributed to more than 90% of the cases reported [21–23]. The highest prevalence was seen amongst men about 30-40 years old, with a considerable proportion of infected people having pre-existing HIV. The outbreak revealed a disturbing pattern of increased human-to-human transmission, especially through close contact, as well as a probable increase in virus transmission by sexual means [22]. This

epidemiological transition has resulted in variable mortality rates, ranging from 1 to 10%, underlining the greater risk in high-density areas and among those with impaired immune systems. Some of the common clinical presentations observed during outbreaks were fever with chills, sore throat, cough, malaise, rash, lymphadenopathy, and myalgia as reported during the outbreaks. The rash usually appears in a centrifugal pattern, beginning on the face and spreading to other body areas [24,25]. Usually, monkeypox is self-resolving and is seen to resolve within a month, severe complications can occur among immunocompromised individuals, pregnant women, and children [26].

Given the resurgence of monkeypox and its propagation beyond Africa, it is critical to strengthen surveillance, research, and prevention efforts. The reduction in smallpox immunization has increased susceptibility to monkeypox, particularly among the unvaccinated. Preventive strategies include preventing contact with wild animals, imposing stringent quarantine measures on animals, and informing the public about the disease. The development of viable vaccinations and diagnostic techniques is critical in addressing the growing global danger of monkeypox. As the disease progresses, coordinated measures are required to monitor and contain its spread, ensuring that healthcare systems and public health responses are adequately prepared for future problems [9,17,27–30]. Kindly refer to Figure 1 for an illustrative overview of the epidemiological aspects of monkeypox.

Clinical features

In over 90% of patients, monkeypox is characterized by firm or rubbery, well-circumscribed, deep-seated lesions that develop as a rash that progresses through various stages before desquamation. These stages are macular, papular, vesicular, and pustular which finally form crusts. The rash can be localized to a single spot on the body or diffuse over different parts of the body at different times, primarily involving the face and extremities [31,32]. However, there is also a high prevalence of genital, perianal, and oral lesions which can easily be misdiagnosed as a sexually transmitted disease [33]. Lesions in the anogenital area may lead to dysuria [31,34].

Generalized symptoms include fever, myalgias, or malaise with lymphadenopathy of the groin, neck, and upper jaw at any point of the disease [31]. Other symptoms involved are intense headache, shortness of breath, difficulty swallowing, vomiting, and back pain. In a typical scenario, symptoms last for 1-2 weeks [32]. Hospitalization and pain management may be required for severe anogenital pain caused by proctitis rectal perforation and soft-tissue superinfections [31]. The severity of the disease is higher in children than in adults; children are prone to infections with orthopoxviruses. Affected individuals remain infectious from the initiation of fever until the vesicles have scabbed [32]. Both monkeypox and smallpox caused by the orthopoxviruses show noticeable similarities; i.e. incubation period of 14 days, prodromal fever, and a centrifugal maculopapular rash as indicated in Table 1. At the molecular level, the central 240 genomic region of MPV is 96.3% identical to the variola virus; the causative agent of smallpox, and the amino acid sequences of the virion proteins encoded in this region are up to 99.2% similar. Nevertheless, these viruses differ in the region encoding the virulence factors resulting in varying severity between the two [32].

There is also a slight possibility of monkeypox co-infection with varicella-zoster virus. In contrast to varicella zoster infection which causes lesions with regional pleomorphism, monkeypox lesions are

typically at the same stage of evolution in one region [32]. Despite monkeypox being a mild disease, there are concerns for adverse outcomes in immunocompromised, pregnant, and pediatric populations [34]. Severe complications may involve sepsis, encephalitis, balanitis, myocarditis, urethritis, and bronchopneumonia when the skin gets infected with bacteria which later spread [31,32]. There can also be ocular complications ranging from simple conjunctivitis to complete vision loss. Vertical transmission of the virus in pregnant women has been shown to lead to fetal demise and spontaneous abortions [32].

Diagnosis

As this illness progresses, it may be hard to diagnose monkeypox just only on clinical findings and symptoms and patients with proctitis or lymphadenopathy, those with influenza-like symptoms following high-risk exposure, and those who present with an unexplained acute rash, including mucosal lesions in the conjunctiva, mouth, penis, vagina, or anorectal area, should all undergo diagnostic procedures [5,6]. As a result, several diagnostic methods have been adopted to identify monkeypox over time. Common methods for diagnosing monkeypox include viral culture (preferred), electron microscopy visualization, immunohistochemistry, anti-orthopoxvirus IgG and IgM, and real-time PCR tests [5]. The ideal samples for these tests are skin lesions, which comprise swabs of the lesion surface and/or exudate, roofs from many lesions, or lesion crusts. Typically, these tests include taking various types of samples from the patients. Some rarely used methods include skin biopsy if necessary [6]. Although monkeypox's histological characteristics are similar to those of cowpox, smallpox, and vaccinia, they can be used to distinguish it from other illnesses including varicella and the herpes simplex virus.

There are several molecular targets used for diagnosis in monkeypox. The D6R gene is a conserved region exceeding 100 nucleotides in length that is shared across the entire *Poxviridae* family, making it a common target for pan-poxvirus detection using real-time PCR [55,56]. Within the *Orthopoxvirus* genus, the E7R gene, encoding the DNA-dependent RNA polymerase subunit 18 (rpo18), and the E9L gene, responsible for encoding the viral DNA polymerase, have conserved primer targets [57]. The B6R gene, which encodes an extracellular envelope protein, serves as a specific marker for monkeypox. Additionally, the B7R, F3L, and N3R genes are of diagnostic significance in PCR-based methods due to their high conservation in monkeypox [55].

Management and Treatment

While supportive care is necessary for more severe forms of monkeypox to prevent more serious adverse consequences, symptomatic therapy is typically sufficient for mild cases [35]. Many drugs, such as Tecovirimat, Brincidofovir, Cidofovir, Ribavirin, and Tiazofurin, have been developed in recent years to treat monkeypox and its various forms. Mechanisms and details of each drug have been indicated in Table 2. However, at the time of writing this article, no drug has received FDA approval for its use against monkeypox, and all these drugs are in the various stages of clinical trials.

Tecovirimat

TPOXX, also known as ST-246, is an antiviral drug currently under consideration for the treatment of monkeypox [36]. Its primary mechanism of action is to inhibit the virus by specifically targeting the P37 protein, which prevents the virus from maturing and exiting the infected cell [35–37]. On January 6, 2022, the European Union approved this drug for smallpox treatment. Numerous animal studies have demonstrated its effectiveness in treating monkeypox when administered after the disease becomes clinically apparent [35]. According to various reports, tecovirimat has been used in at least eighteen patients in the U.S. children under 5 years old, and an infant as young as 10 days old in the United Kingdom. In the UK [31]. Studies also indicate that tecovirimat reduces the fatality rate, with a 90% chance of survival [36]. A retrospective observational study involving seven pox-infected patients showed that administering 600 mg of tecovirimat orally twice daily for two weeks reduced the duration of illness (with hospitalization lasting 10 days) and was well tolerated by patients. Tecovirimat, however, may not be as effective in immunocompromised individuals and there might be a necessity to increase the number of days and dosage for the drug. Multiple animal trials also reported that this drug may not have any serious side effects and is well-tolerated, except for mild headache, nausea, and pain in the injection site [35].

Brincidofovir

Brincidofovir has antiviral activity against certain virus families which include adenovirus, cytomegalovirus, herpesviruses, polyomaviruses, and lastly, poxviruses. This drug has also recently received FDA approval in 2021 for the treatment of smallpox [35]. Its primary mechanism of action is inhibiting viral DNA replication by targeting viral DNA polymerase [35,36]. Although limited data, studies on animals demonstrated antiviral activity against orthopoxvirus infections [35]. The drug significantly reduced viral replication and increased survival rates in animals infected with orthopoxviruses, making it a promising candidate for human use [35,36]. In addition, some studies have also suggested that this drug may reduce the severity and duration of monkeypox infections. Except for nausea, vomiting, and diarrhea, this drug does not have any adverse effects [35].

Cidofovir

DNA polymerase is inhibited by cidofovir. It is also useful against poxviruses and has been authorized for the treatment of cytomegalovirus retinitis in HIV patients. It has exhibited anti-monkeypox viral action. This drug can prevent death only when it is administered before the beginning of the rash. Due to its nephrotoxic effects, the administration has only been studied in the very early stages of symptoms in high-risk contacts of confirmed cases in human instances. Headache, asthenia, fever, skin rash, nausea, vomiting, and problems in the eyes are the most frequent side effects. Nephrotoxicity is the primary dose-limiting toxicity linked to cidofovir treatment; this effect is dose-dependent. For patients who are hypersensitive to cidofovir or other medications that include sulfonamides, the medication should not be administered [35].

Prevention and Vaccination Strategies

The CDC advises that hospitalized cases of monkeypox should be isolated in a room with negative air pressure. In addition, the Spanish Ministry of Health advised medical professionals treating monkeypox patients to wear personal protective equipment (PPE) to prevent contact and airborne transmission which includes a gown, gloves, eye protection, and FFP2 masks. Additional recommendations state that patients with active skin lesions from infection should be kept isolated at home and should make every effort to avoid contact with their surroundings and pets. When possible, the affected person should cover the lesions and wear a surgical mask until the crust falls off and a new layer of skin forms [35]. Recent outbreaks in the years 2022 and 2024 have led to the development of several vaccines which have been an important part of controlling the spread of monkeypox. These include JYNNEOS, ACAM2000, and LC16m8 [38].

JYNNEOS (Imvamune/Imvanex)

JYNNEOS, now a primary alternative to ACAM2000, has recently received approval from both the FDA and the European Medicines Agency (EMA) for preventing orthopoxvirus infections, including smallpox and monkeypox, in individuals aged 18 and older [35]. It utilizes a modified strain of the vaccinia Ankara (MVA) virus, classified as a third-generation, non-replicating vaccine [35,38]. The recommended dosing schedule involves administering two subcutaneous injections 28 days apart, with full protection taking effect two weeks after the second dose [35,38]. Studies have proved that this vaccine is extremely safe including in high-risk, immunocompromised patients with its side effects only including mild headaches, myalgia, and nausea [35].

ACAM2000

ACAM2000, a second-generation live vaccinia virus vaccine, is FDA-approved for smallpox prevention. Unlike non-replicating vaccines, ACAM2000 replicates within the body to generate immunity against orthopoxviruses, such as monkeypox. It is administered using the scarification technique, which typically results in a skin lesion, signaling successful vaccination. Full immunity develops around 28 days after the dose is given. However, compared to JYNNEOS, ACAM2000 is associated with a higher rate of side effects, such as eczema vaccinatum and myopericarditis. It is also contraindicated in individuals with severe allergies, atopic dermatitis, hypertension, diabetes, high cholesterol, pregnancy, or those who are immunocompromised [35].

LC16m8

This third-generation vaccine is developed from the Lister strain of the smallpox vaccine, cultivated in rabbit kidney cells [36,38]. While clinical data in humans is limited, animal studies have shown highly promising outcomes, demonstrating the vaccine's ability to prevent both the onset and transmission of the disease with minimal to no adverse effects. Additionally, several other studies have confirmed that the vaccine can offer long-term immunity against various strains of monkeypox, further highlighting its potential as an effective tool in controlling orthopoxvirus outbreaks [35].

Recent Research and Developments

The endemic nature of monkeypox has slowly taken the form of an epidemic due to reported cases in different far-off countries [39–41]. Establishing a preventive strategy is the first thing to do whenever a global infectious disease outbreak occurs. This is the situation with the resurging monkeypox outbreak [39]. The FDA-approved smallpox vaccine, which has been tested against monkeypox and has smallpox approval status, is now only available to a limited number of workers [39,42,43]. According to the most recent regulations, people infected with the monkeypox virus should be kept isolated until all symptoms have completely subsided and the rash has healed, which may take up to four weeks [44]. By combining biomarker-based theory with *in silico* and bioinformatic statistical and molecular models, improved treatments with fewer side effects, better delivery, lower potential for resistance, and superior pharmacokinetic qualities could be developed for viral diseases. Bio-based approaches enable effective screening, diagnosis, prognosis, and mitigation of vaccination and adaptive treatment measures [39,45,46]. Better cellular targets, creative drug-targeting techniques, and enhanced drug delivery systems are the next steps in creating more effective antivirals to combat infectious diseases like monkeypox [47,48]. The genetic similarities between smallpox and monkeypox were taken into consideration when most of these markers were released, which offers a path forward for possible future treatments [49–52].

Nanotechnology-based treatments are another significant advancement that portends improved monkeypox therapy choices in the future [53]. This treatment provides new, affordable, and all-encompassing choices for treating a variety of illnesses. The fundamental idea is to modify current and novel antivirals' physicochemical characteristics and associated pharmacological qualities at the nanoscale [54].

The research community is working hard under these pressures to develop a treatment that can effectively combat monkeypox and other infectious diseases. The majority of recent developments are still considered theoretical because they relate to diseases that are predominantly caused by smallpox, although tremendous progress is being made in the areas of vaccine and drug development. Therefore, more effort must be made to create modern therapy alternatives that target monkeypox specifically. They must use an integrated approach to coordinate their efforts with the medical industry for clinical experimentation. Medical authorities' recommendations have been explained properly, and specific workforce demographics and susceptible persons have been taken into consideration while developing immunization and treatment regimens. Before the monkeypox epidemic turns into another pandemic of the century, a coordinated and inclusive approach will be required to educate the community and general public in awareness initiatives addressing mitigation, adaptation, and disease management [39,55–59].

Outbreak of 2024

On the 14th of August 2024, WHO determined and declared the outbreak of monkeypox in the Democratic Republic of Congo (DRC) and various other countries in the African region as well as in the surrounding areas [60,61].

Clade Ib MPV, a new strain of Monkeypox was found in September last year in DRC. WHO has declared the emergence as a public health emergency of international concern (PHEIC). This is the second PHEIC regarding monkeypox, the first was in July 2022 during the outbreak of the Monkeypox strain clade II. Phylogenetic analysis of the strains of MPV genome sequences from the south Kivu province shows that the MPV belongs to the clade I lineage. PCR analyses are being used to precisely detect clade Ib viruses. Neighboring countries also affected include; Burundi, Kenya, Rwanda, and Uganda. Based on the provided statistics and data, it is shown that the majority of the cases are among the adult population where the disease may have spread through sexual contact, identified among sex workers and their customers [60].

On July 24, 2024, Burundi declared a monkeypox outbreak after the confirmation of three cases. Upon investigating 545 alerts by August 17, the country confirmed 142 monkeypox cases out of 358 suspects; this marked the positivity rate at 39.7%. About 38% of the cases were from Bujumbura Nord, an urban district. According to statistics, men accounted for 55.6% of the cases, and children under five accounted for 28.9%. The National Emergency Operations Centre (EOC) with the support of WHO has responded with surveillance and public awareness. The country faces challenges due to limited resources and a lack of isolation facilities. However, no deaths were reported [62,63].

In Kenya, the first case was confirmed on 29 July 2024 involving a 42-year-old man who traveled from Uganda. By mid-August 14 suspected cases were identified, one of which tested positive for monkeypox clade Ib. Public Health Emergency Operations activated by the country's Ministry of Health has formed Incident Management teams, and begun intense surveillance along major travel routes. National media channels actively disseminated awareness and prevention messages. No deaths were reported in Kenya either [64].

On 24 July 2024, Rwanda confirmed its first two cases in a 33-year-old woman and a 34-year-old man both having recent travel history to DRC. Four cases were confirmed by early August. A National Rapid Response Team (RRT) was deployed by the government to mobilize resources to affected and high-risk areas including Rubavu and Rusizi, both of which border the DRC. Intense surveillance was launched in healthcare facilities and awareness was spread through radio, TV, and social media. WHO has been closely working across all three countries along with other partners to prevent the spread of monkeypox by strengthening laboratory diagnostics, improving awareness, and maintaining isolation and treatment [64,65].

Conclusion

The resurgence of monkeypox as a significant global health concern underscores the urgent need for enhanced surveillance, research, and coordinated public health responses. The 2022 and 2024 outbreaks have highlighted the evolving epidemiological patterns of monkeypox, including increased human-to-human transmission and possible sexual transmission routes, necessitating a re-evaluation of containment and prevention strategies. A comprehensive understanding of monkeypox's clinical manifestations, diagnostic techniques, and therapeutic approaches is critical in mitigating its impact. The disease presents with a characteristic rash, systemic symptoms, and complications that can be severe in immunocompromised individuals, pregnant women, and children. Advances in molecular diagnostics, particularly real-time PCR and histopathological studies, have greatly improved early and accurate detection, allowing for timely intervention.

While no specific antiviral treatment for monkeypox has received full FDA approval, promising candidates such as Tecovirimat, Brincidofovir, and Cidofovir have shown potential in mitigating disease severity. The role of vaccinations, particularly JYNNEOS and ACAM2000, has been pivotal in outbreak control. However, challenges persist in vaccine distribution, accessibility, and public acceptance, particularly in resource-limited settings. Looking forward, future research should focus on novel antiviral drug development, improved vaccine formulations, and innovative diagnostic tools, including nanotechnology-based approaches. Additionally, global health policies must prioritize education, surveillance, and rapid response mechanisms to prevent future outbreaks from escalating into pandemics.

Email addresses and ORCIDs of the authors in order:

1. Harsahaj Singh Wilkhoo-sahajwilkhoo@gmail.com, ORCID-<https://orcid.org/0009-0000-2943-6404>
2. Afra Wasama Islam- islam1048@gmail.com, ORCID-<https://orcid.org/0009-0007-4855-6226>
3. Johora Akter-johoramim13@gmail.com, ORCID-<https://orcid.org/0009-0008-4219-6917>
4. Sharel Kaithathara-sharelk99@gmail.com, ORCID-<https://orcid.org/0000-0003-2900-6003>
5. Samreen Rizwan Ahmed Shaikh-samreen.shaikh.2800@gmail.com, ORCID-<https://orcid.org/0009-0003-1517-0010>
6. Rashi- rashu1009@gmail.com. ORCID- <https://orcid.org/0009-0000-7814-5475>

Author Contributions

Conceptualization: Harsahaj Singh Wilkhoo, Afra Wasama Islam. Writing-original draft: Harsahaj Singh Wilkhoo, Afra Wasama Islam, Johora Akter, Sharel Kaithathara, Samreen Rizwan Sheikh, Rashi. Writing-review & editing: Harsahaj Singh Wilkhoo, Afra Wasama Islam, Johora Akter, Sharel Kaithathara, Samreen Rizwan Sheikh, Rashi. Supervision: Harsahaj Singh Wilkhoo, Afra Wasama Islam.

Declaration of Conflicting Interest

The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Funding Statement

The authors received no financial support for the research, authorship, and/or publication of this article.

References:

1. Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. *Bull World Health Organ* [Internet]. 1972 [cited 2025 Jan 12];46(5):593–7. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2480792/>
2. Kaufman AR, Chodosh J, Pineda R II. Monkeypox Virus and Ophthalmology—A Primer on the 2022 Monkeypox Outbreak and Monkeypox-Related Ophthalmic Disease. *JAMA Ophthalmology* [Internet]. 2023 Jan 1 [cited 2025 Jan 12];141(1):78–83. Available from: <https://doi.org/10.1001/jamaophthalmol.2022.4567>
3. Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ. Orthopoxvirus Genome Evolution: The Role of Gene Loss. *Viruses* [Internet]. 2010 Sep 15 [cited 2025 Jan 12];2(9):1933–67. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3185746/>
4. Nuzzo JB, Borio LL, Gostin LO. The WHO Declaration of Monkeypox as a Global Public Health Emergency. *JAMA* [Internet]. 2022 Aug 16 [cited 2025 Oct 23];328(7):615–7. Available from: <https://doi.org/10.1001/jama.2022.12513>
5. Karagoz A, Tombuloglu H, Alsaeed M, Tombuloglu G, AlRubaish AA, Mahmoud A, et al. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis. *J Infect Public Health* [Internet]. 2023 Apr [cited 2024 Aug 28];16(4):531–41. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908738/>
6. Mitjà O, Ogoina D, Titanji BK, Galvan C, Muyembe JJ, Marks M, et al. Monkeypox. *Lancet* [Internet]. 2023 [cited 2024 Nov 24];401(10370):60–74. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671644/>
7. Carrubba S, Geevarghese A, Solli E, Guttha S, Sims J, Sperber L, et al. Novel severe oculocutaneous manifestations of human monkeypox virus infection and their historical analogues. *The Lancet Infectious Diseases* [Internet]. 2023 May 1 [cited 2025 Jan 12];23(5):e190–7. Available from: <https://www.sciencedirect.com/science/article/pii/S1473309922008696>
8. Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, et al. A tale of two clades: monkeypox viruses. *J Gen Virol*. 2005 Oct;86(Pt 10):2661–72.

9. McCollum AM, Damon IK. Human monkeypox. *Clin Infect Dis*. 2014 Jan;58(2):260–7.
10. Sah R, Abdelaal A, Reda A, Katamesh BE, Manirambona E, Abdelmonem H, et al. Monkeypox and Its Possible Sexual Transmission: Where Are We Now with Its Evidence? *Pathogens* [Internet]. 2022 Aug 17 [cited 2025 Jan 12];11(8):924. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414346/>
11. WHO | Monkeypox – Nigeria [Internet]. [cited 2025 Feb 2]. Available from: <https://web.archive.org/web/20181008195024/http://www.who.int/csr/don/05-october-2018-monkeypox-nigeria/en/>
12. Epidemiology, clinical manifestations, and diagnosis of mpox (formerly monkeypox) - UpToDate [Internet]. [cited 2025 Feb 2]. Available from: <https://www.uptodate.com/contents/epidemiology-clinical-manifestations-and-diagnosis-of-mpox-formerly-monkeypox>
13. Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. *Lancet Infect Dis* [Internet]. 2019 Aug [cited 2025 Feb 2];19(8):872–9. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628943/>
14. Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. *PLoS Negl Trop Dis* [Internet]. 2022 Feb 11 [cited 2025 Feb 2];16(2):e0010141. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8870502/>
15. Yinka-Ogunleye A, Aruna O, Ogoina D, Aworabhi N, Eteng W, Badaru S, et al. Reemergence of Human Monkeypox in Nigeria, 2017. *Emerg Infect Dis* [Internet]. 2018 Jun [cited 2025 Feb 2];24(6):1149–51. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004876/>
16. Selb R, Werber D, Falkenhorst G, Steffen G, Lachmann R, Ruscher C, et al. A shift from travel-associated cases to autochthonous transmission with Berlin as epicentre of the monkeypox outbreak in Germany, May to June 2022. *Euro Surveill* [Internet]. 2022 Jul 7 [cited 2025 Feb 2];27(27):2200499. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264732/>
17. Reynolds MG, Damon IK. Outbreaks of human monkeypox after cessation of smallpox vaccination. *Trends Microbiol*. 2012 Feb;20(2):80–7.
18. Reynolds MG, Davidson WB, Curns AT, Conover CS, Huhn G, Davis JP, et al. Spectrum of Infection and Risk Factors for Human Monkeypox, United States, 2003. *Emerg Infect Dis* [Internet]. 2007 Sep [cited 2025 Feb 2];13(9):1332–9. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2857287/>

19. Adler H, Gould S, Hine P, Snell LB, Wong W, Houlihan CF, et al. Clinical features and management of human monkeypox: a retrospective observational study in the UK. *Lancet Infect Dis*. 2022 Aug;22(8):1153–62.

20. Lovett S, Griffith J, Lehnertz N, Fox T, Siwek G, Barnes AMT, et al. Ocular Mpox in a Breastfeeding Healthcare Provider. *Open Forum Infect Dis* [Internet]. 2024 May 30 [cited 2025 Feb 2];11(6):ofae290. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170487/>

21. Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, et al. Monkeypox Virus Infection in Humans across 16 Countries — April–June 2022. *New England Journal of Medicine* [Internet]. 2022 Aug 24 [cited 2025 Oct 23];387(8):679–91. Available from: <https://www.nejm.org/doi/full/10.1056/NEJMoa2207323>

22. Guzzetta G, Marziano V, Mammone A, Siddu A, Ferraro F, Caraglia A, et al. The decline of the 2022 Italian mpox epidemic: Role of behavior changes and control strategies. *Nat Commun* [Internet]. 2024 Mar 13 [cited 2025 Oct 23];15(1):2283. Available from: <https://www.nature.com/articles/s41467-024-46590-4>

23. Kava CM. Epidemiologic Features of the Monkeypox Outbreak and the Public Health Response — United States, May 17–October 6, 2022. *MMWR Morb Mortal Wkly Rep* [Internet]. 2022 [cited 2025 Oct 23];71. Available from: <https://www.cdc.gov/mmwr/volumes/71/wr/mm7145a4.htm>

24. Liu BM, Rakhmanina NY, Yang Z, Bukrinsky MI. Mpox (Monkeypox) Virus and Its Co-Infection with HIV, Sexually Transmitted Infections, or Bacterial Superinfections: Double Whammy or a New Prime Culprit? *Viruses* [Internet]. 2024 May [cited 2025 Oct 23];16(5):784. Available from: <https://www.mdpi.com/1999-4915/16/5/784>

25. CDC. Clinical Considerations for Monkeypox in Immunocompromised People [Internet]. Monkeypox. 2025 [cited 2025 Oct 23]. Available from: <https://www.cdc.gov/monkeypox/hcp/clinical-care/immunocompromised-people.html>

26. Reynolds MG, Yorita KL, Kuehnert MJ, Davidson WB, Huhn GD, Holman RC, et al. Clinical manifestations of human monkeypox influenced by route of infection. *J Infect Dis*. 2006 Sep 15;194(6):773–80.

27. Alakunle E, Kolawole D, Diaz-Cánová D, Alele F, Adegbeye O, Moens U, et al. A comprehensive review of monkeypox virus and mpox characteristics. *Front Cell Infect Microbiol* [Internet]. 2024 Mar 6 [cited 2024 Aug 28];14:1360586. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952103/>

28. One Health Bulletin [Internet]. [cited 2025 Feb 2]. Available from: https://journals.lww.com/ohbl/fulltext/2023/02090/human_mpox_monkeypox__epidemiologic,.3.a.spx

29. Sharif N, Dey SK. Epidemiology of mpox: Focus on men with HIV. *Helix* [Internet]. 2023 Nov 8 [cited 2025 Feb 2];9(11):e22129. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10685360/>

30. Van Dijck C, Hoff NA, Mbala-Kingebeni P, Low N, Cevik M, Rimoin AW, et al. Emergence of mpox in the post-smallpox era—a narrative review on mpox epidemiology. *Clinical Microbiology and Infection* [Internet]. 2023 Dec 1 [cited 2025 Feb 2];29(12):1487–92. Available from: <https://www.sciencedirect.com/science/article/pii/S1198743X23003890>

31. Beeson AM, Haston J, McCormick DW, Reynolds M, Chatham-Stephens K, McCollum AM, et al. Mpox in Children and Adolescents: Epidemiology, Clinical Features, Diagnosis, and Management. *Pediatrics* [Internet]. 2023 Feb 1 [cited 2024 Aug 29];151(2):e2022060179. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995221/>

32. Zong Y, Kamoi K, Zhang J, Yang M, Ohno-Matsui K. Mpox (Monkeypox) and the Eye: Ocular Manifestation, Diagnosis, Treatment and Vaccination. *Viruses* [Internet]. 2023 Feb 23 [cited 2024 Aug 28];15(3):616. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054449/>

33. Dashraath P, Nielsen-Saines K, Rimoin A, Mattar CNZ, Panchaud A, Baud D. Monkeypox in pregnancy: virology, clinical presentation, and obstetric management. *Am J Obstet Gynecol* [Internet]. 2022 Aug 17 [cited 2025 Jan 12]; Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9534101/>

34. Mpox [Internet]. [cited 2024 Sep 14]. Available from: <https://www.who.int/news-room/fact-sheets/detail/mpox>

35. de la Calle-Prieto F, Estébanez Muñoz M, Ramírez G, Díaz-Menéndez M, Velasco M, Azkune Galparsoro H, et al. Treatment and prevention of monkeypox. *Enferm Infect Microbiol Clin (Engl Ed)* [Internet]. 2023 Jan 7 [cited 2024 Aug 28]; Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823286/>

36. Sudarmaji N, Kifli N, Hermansyah A, Yeoh SF, Goh BH, Ming LC. Prevention and Treatment of Monkeypox: A Systematic Review of Preclinical Studies. *Viruses* [Internet]. 2022 Nov 11 [cited 2024 Aug 28];14(11):2496. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699130/>

37. Niaz F, Tariq S, Ali SM, Memon R, Nashwan AJ, Ullah I. Monkeypox treatment: Is tecovirimat the answer? *J Infect Public Health* [Internet]. 2022 Nov [cited 2024 Aug 28];15(11):1297–8. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9573899/>

38. Poland GA, Kennedy RB, Tosh PK. Prevention of monkeypox with vaccines: a rapid review. *Lancet Infect Dis* [Internet]. 2022 Dec [cited 2024 Aug 28];22(12):e349–58. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628950/>

39. Malik S, Ahmad T, Ahsan O, Muhammad K, Waheed Y. Recent Developments in Mpox Prevention and Treatment Options. *Vaccines (Basel)* [Internet]. 2023 Feb 21 [cited 2025 Feb 2];11(3):500. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10057056/>

40. Albin JS, Lazarus JE, Hysell KM, Rubins DM, Germaine L, Dugdale CM, et al. Development and implementation of a clinical decision support system tool for the evaluation of suspected monkeypox infection. *J Am Med Inform Assoc* [Internet]. 2022 Aug 29 [cited 2025 Feb 2];29(12):2124–7. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667162/>

41. Minhaj FS, Ogale YP, Whitehill F, Schultz J, Foote M, Davidson W, et al. Monkeypox outbreak—Nine states, May 2022. *American Journal of Transplantation* [Internet]. 2022 [cited 2025 Feb 2];22(8):2104–10. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.16669>

42. Mahase E. Monkeypox: Fractional vaccine doses will be piloted as new treatment trial launches. *BMJ*. 2022 Aug 23;378:o2080.

43. Islam MdR, Hossain MdJ, Roy A, Hasan AHMN, Rahman MdA, Shahriar M, et al. Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. *Health Sci Rep* [Internet]. 2022 Aug 23 [cited 2025 Feb 2];5(5):e798. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399446/>

44. Allan-Blitz LT, Klausner JD. Current Evidence Demonstrates That Monkeypox Is a Sexually Transmitted Infection. *Sex Transm Dis* [Internet]. 2023 Feb [cited 2025 Feb 2];50(2):63–5. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9855745/>

45. Kar PP, Rath B, Ramani YR, Maharana CS. Amelioration of Cyclophosphamide Induced Immunosuppression by the Hydro-Alcoholic Extract of Gymnema Sylvestre Leaves in Albino Rats. *Biomedical and Pharmacology Journal* [Internet]. 2019 Mar 25 [cited 2025 Feb 2];12(1):251–8. Available from: <https://biomedpharmajournal.org/vol12no1/amelioration-of-cyclophosphamide-induced-immunosuppression-by-the-hydro-alcoholic-extract-of-gymnema-sylvestre-leaves-in-albino-rats/>

46. Raccagni AR, Candela C, Bruzzi E, Mileto D, Canetti D, Rizzo A, et al. Real-life use of cidofovir for the treatment of severe monkeypox cases. *J Med Virol*. 2023 Jan;95(1):e28218.

47. Goyal L, Ajmera K, Pandit R, Pandit T. Prevention and Treatment of Monkeypox: A Step-by-Step Guide for Healthcare Professionals and General Population. *Cureus* [Internet]. [cited 2025 Feb 2];14(8):e28230. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9393027/>

48. Kupferschmidt K. Monkeypox vaccination plans take shape amid questions. *Science*. 2022 Jun 10;376(6598):1142–3.

49. Webb E, Rigby I, Michelen M, Dagens A, Cheng V, Rojek AM, et al. Availability, scope and quality of monkeypox clinical management guidelines globally: a systematic review. *BMJ Glob Health* [Internet]. 2022 Aug 5 [cited 2025 Feb 2];7(8):e009838. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9472169/>

50. Thakur N. MonkeyPox2022Tweets: A Large-Scale Twitter Dataset on the 2022 Monkeypox Outbreak, Findings from Analysis of Tweets, and Open Research Questions. *Infect Dis Rep* [Internet]. 2022 Nov 14 [cited 2025 Feb 2];14(6):855–83. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9680479/>

51. Turner M, Mandia J, Keltner C, Haynes R, Faestel P, Mease L. Monkeypox in Patient Immunized with ACAM2000 Smallpox Vaccine During 2022 Outbreak. *Emerg Infect Dis* [Internet]. 2022 Nov [cited 2025 Feb 2];28(11):2336–8. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622228/>

52. Hutson CL, Kondas AV, Mauldin MR, Doty JB, Grossi IM, Morgan CN, et al. Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus Animal Model. *mSphere* [Internet]. 2021 Feb 3 [cited 2025 Feb 2];6(1):e00927-20. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7860987/>

53. Lai CC, Hsu CK, Yen MY, Lee PI, Ko WC, Hsueh PR. Monkeypox: An emerging global threat during the COVID-19 pandemic. *J Microbiol Immunol Infect* [Internet]. 2022 Oct [cited 2025 Feb 2];55(5):787–94. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352646/>

54. Meo SA, Al-Masri AA, Klonoff DC, Alshahrani AN, Al-khlaiwi T. Comparison of Biological, Pharmacological Characteristics, Indications, Contraindications and Adverse Effects of JYNNEOS and ACAM2000 Monkeypox Vaccines. *Vaccines (Basel)* [Internet]. 2022 Nov 21 [cited 2025 Feb 2];10(11):1971. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9698380/>

55. Pastula DM, Copeland MJ, Hannan MC, Rapaka S, Kitani T, Kleiner E, et al. Two Cases of Monkeypox-Associated Encephalomyelitis — Colorado and the District of Columbia, July–August 2022. *MMWR Morb Mortal Wkly Rep* [Internet]. 2022 Sep 23 [cited 2025 Feb 2];71(38):1212–5. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9531567/>

56. Sherwat A, Brooks JT, Birnkrant D, Kim P. Tecovirimat and the Treatment of Monkeypox - Past, Present, and Future Considerations. *N Engl J Med*. 2022 Aug 18;387(7):579–81.

57. Chakraborty S, Chandran D, Mohapatra RK, Alagawany M, El-Shall NA, Sharma AK, et al. Clinical management, antiviral drugs and immunotherapeutics for treating monkeypox. An update on current knowledge and futuristic prospects. *Int J Surg* [Internet]. 2022 Sep [cited 2025 Feb 2];105:106847. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533875/>

58. Mukherjee D, Roy S, Singh V, Gopinath S, Pokhrel NB, Jaiswal V. Monkeypox as an emerging global health threat during the COVID-19 time. *Ann Med Surg (Lond)* [Internet]. 2022 Jun 24 [cited 2025 Feb 2];79:104075. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225920/>

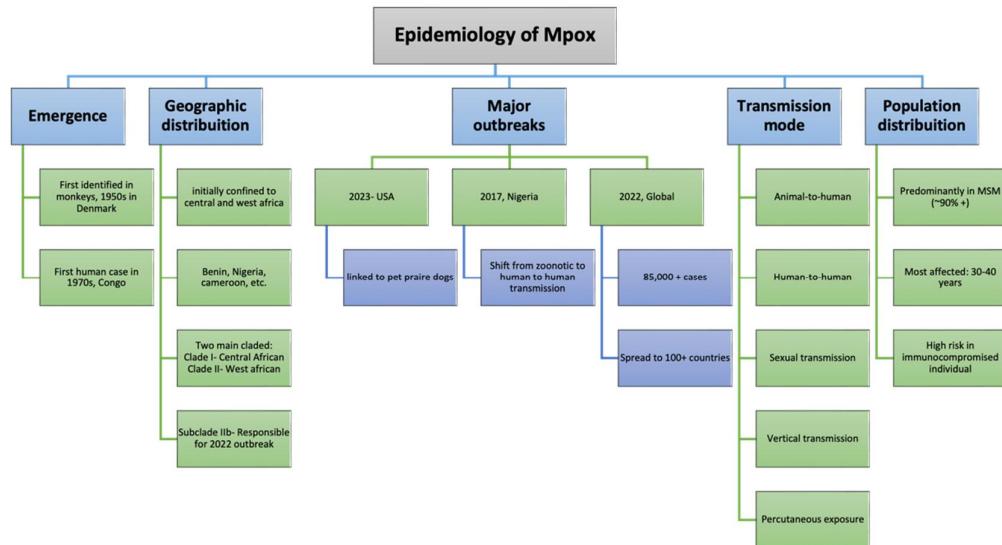
59. Lee W, Kim YJ, Lee SJ, Ahn DG, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus. *J Microbiol Biotechnol*

[Internet]. 2023 Aug 28 [cited 2024 Aug 31];33(8):981–91. Available from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468680/>

60. Eurosurveillance editorial team. Note from the editors: WHO declares mpox outbreak a public health emergency of international concern. *Euro Surveill*. 2024 Aug;29(33):240815v.

61. WHO Director-General declares the ongoing monkeypox outbreak a Public Health Emergency of International Concern [Internet]. [cited 2025 Oct 23]. Available from: <https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern>

62. UNICEF Burundi Humanitarian Situation Report No. 1 (Level 3 Mpox): 25 July to 15 September 2024 - Burundi | ReliefWeb [Internet]. 2024 [cited 2025 Oct 23]. Available from: <https://reliefweb.int/report/burundi/unicef-burundi-humanitarian-situation-report-no-1-level-3-mpox-25-july-15-september-2024>


63. Southern and Eastern Africa Mpox Situation Snapshot - 3 September 2024 - Burundi | ReliefWeb [Internet]. 2024 [cited 2025 Apr 4]. Available from: <https://reliefweb.int/report/burundi/southern-and-eastern-africa-mpox-situation-snapshot-3-september-2024>

64. Multi-country outbreak of mpox, External situation report #42 - 9 November 2024 - Democratic Republic of the Congo | ReliefWeb [Internet]. 2024 [cited 2025 Apr 4]. Available from: <https://reliefweb.int/report/democratic-republic-congo/multi-country-outbreak-mpox-external-situation-report-42-9-november-2024>

65. Mpox – African Region [Internet]. [cited 2024 Sep 28]. Available from: <https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON528>

Figure Legend and figure

Figure 1. Illustrated epidemiology of Monkeypox

Tables

Table 1. Differences between Monkeypox and Smallpox

Feature	Monkeypox	Smallpox
<i>Causative agent</i>	Monkeypox Virus	Variola Virus
<i>Incubation period</i>	7-14 days	10-14 days
<i>Prodromal symptoms</i>	Fever, lymphadenopathy, myalgia	High fever, severe fatigue
<i>Rash progression</i>	Macules → Papules → Vesicles → Pustules → Crusts	Similar progression but more severe
<i>Lesion distribution</i>	Centrifugal (face & extremities)	More generalized
<i>Severity</i>	Usually self-limiting, severe in immunocompromised	High mortality (30%)
<i>Transmission</i>	Direct contact, respiratory droplets	Primarily respiratory droplets

Table 2. Different types of drugs currently used for the treatment of Monkeypox

<i>Drug Name</i>	<i>Mechanism of Action</i>	<i>Approval Status</i>	<i>Adverse Effects</i>
<i>Tecovirimat (TPOXX)</i>	Inhibits P37 protein, preventing DNA maturation	Approved in the EU, investigational in the US	Headache, nausea, injection site pain
<i>Brincidofovir</i>	Inhibits viral DNA polymerase	FDA-approved for smallpox	Nausea, vomiting, diarrhea
<i>Cidofovir</i>	Inhibits viral DNA polymerase	Approved for cytomegalovirus, investigational for monkeypox	Nephrotoxicity, nausea, vomiting
<i>Ribavirin</i>	Inhibits viral RNA synthesis	Not FDA-approved for monkeypox	Anemia, liver toxicity