

Mitochondrial Dysfunction: A Precision Therapeutic Target in Parkinson's Disease

Mariami Varazashvili

Faculty of Medicine, Caucasus University, Tbilisi, Georgia;
m_varazashvili1@cu.edu.ge | ORCID: 0009-0007-5057-0908

Abstract

Parkinson's Disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuron loss in the substantia nigra pars compacta and α -synuclein aggregation. Growing evidence identifies mitochondrial dysfunction as a central driver of PD pathogenesis (1-3), linking genetic mutations, oxidative stress, environmental toxins, and lysosomal impairment. This review summarizes major mitochondrial abnormalities-complex I deficiency, mtDNA damage, disrupted dynamics, defective mitophagy, and impaired mitochondria - lysosome crosstalk (1,4). The roles of PD-related genes (PINK1, Parkin, LRRK2, GBA1, DJ-1, VPS35) and environmental toxins (MPTP, rotenone, paraquat) (5-7) are discussed, along with therapeutic strategies including antioxidants, mitophagy enhancers, gene therapy, and lifestyle interventions. Understanding mitochondrial mechanisms provides a foundation for precision, disease-modifying therapies.

Keywords: Parkinson's Disease, Mitochondrial Dysfunction, Mitophagy, Oxidative Stress, α -Synuclein, PINK1, Parkin, Precision Medicine.

1. Introduction

Parkinson's Disease affects over 10 million people worldwide and presents with motor symptoms (bradykinesia, rigidity, tremor) and non-motor manifestations including cognitive decline and autonomic dysfunction. Pathologically, PD involves dopaminergic neuron degeneration and Lewy bodies composed of α -synuclein. Mitochondrial impairment is now recognized as a central pathogenic mechanism (1). Dopaminergic neurons have high metabolic demand, making them vulnerable to mitochondrial damage, ATP deficits, ROS overproduction, disrupted calcium buffering, and impaired protein handling.

2. Methodology

A literature search was conducted using PubMed, PMC, Scopus, and Web of Science. English peer-reviewed studies focusing on mitochondrial mechanisms or therapeutic strategies were included. Over 50 publications were analyzed to synthesize current evidence.

3. Mitochondrial Bioenergetic Dysfunction

3.1 Complex I Deficiency

Postmortem PD brain samples consistently show reduced complex I activity (1,5), resulting in diminished ATP production and increased ROS generation. Environmental toxins such as MPTP, rotenone, and paraquat directly inhibit complex I, producing PD-like pathology (5).

3.2 mtDNA Damage

PD brains exhibit accumulated mtDNA deletions and mutations (3), impairing electron transport and worsening oxidative stress. Dopaminergic neurons are particularly sensitive due to their high oxygen consumption and limited antioxidant capacity.

3.3 Mitochondrial Dynamics

Imbalanced fission and fusion-regulated by DRP1, MFN1/2, and OPA1-causes fragmented mitochondria (4). These fail to meet neuronal energy demands and are inefficiently cleared, amplifying oxidative damage.

4. Mitophagy and Quality Control

4.1 PINK1–Parkin Pathway

Damaged mitochondria activate PINK1 accumulation on the outer membrane, recruiting Parkin to label defective mitochondria for autophagic removal. Mutations in PINK1 or PARK2 block this process, allowing damaged mitochondria to accumulate (4,8).

4.2 Parkin-Independent Mitophagy

Receptors such as NIX, BNIP3, and FUNDC1 can mediate mitophagy independently of Parkin (9). These pathways partially compensate but are insufficient in PD models with severe mitochondrial compromise.

4.3 Lysosomal Dysfunction

Successful mitophagy requires functional lysosomes. PD-associated mutations in GBA1, LRRK2, and VPS35 impair lysosomal enzymes and autophagosome fusion (6), promoting mitochondrial accumulation and α -synuclein aggregation.

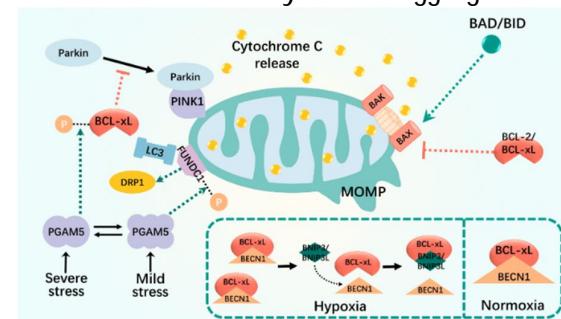


Figure 1. PINK1/Parkin-Mediated Mitophagy in Parkinson's Disease.

Damaged mitochondria are cleared through PINK1 - Parkin mitophagy. When this process fails, dysfunctional mitochondria accumulate, driving oxidative stress, α -synuclein buildup, and neuron loss.

5. Mitochondria-Lysosome Crosstalk

Mitochondria - lysosome contact sites (MLCS) regulate calcium transfer and lipid exchange. PD-related mutations disrupt MLCS, contributing to defective mitophagy and excess ROS (7).

6. α -Synuclein Pathology and Neuroinflammation

Misfolded α -synuclein binds mitochondrial membranes, inhibiting complex I (2). Damaged mitochondria release mtDNA and cardiolipin, activating microglia via cGAS-STING and NLRP3 pathways (3). Chronic inflammation accelerates neuronal degeneration.

7. Genetic and Environmental Factors

7.1 Genetic Mutations

- Mutations in PINK1, PARK2, LRRK2, DJ-1, GBA1, and VPS35 impair mitochondrial quality control, lysosomal function, and antioxidant defense (8).

7.2 Environmental Toxins –

Rotenone, paraquat, and MPTP inhibit complex I, increase oxidative stress, and induce α -synuclein aggregation (5,10). Environmental exposure synergizes with genetic vulnerability to worsen PD outcomes.

8. Therapeutic Strategies

8.1 Antioxidants

- Coenzyme Q10 - supports complex I/III
- MitoQ - mitochondria-penetrating ROS scavenger
- NAC - boosts glutathione synthesis(11)

8.2 Mitophagy Enhancers

- Urolithin A - stimulates mitophagy
- Nicotinamide Riboside - elevates NAD⁺
(4,11)

8.3 Gene Therapy - AAV-based PINK1 or Parkin delivery restores mitophagy and reduces α -synuclein toxicity (8).

8.4 Lifestyle / Pharmacologic Interventions

- Exercise - increases mitochondrial biogenesis
Metformin - AMPK activation
Exenatide - GLP-1-mediated mitochondrial protection
(12)

9. Future Directions

Precision mitochondrial medicine integrates genetic profiling, biomarkers, and targeted interventions (12). Combination therapies - antioxidants, mitophagy enhancers, gene therapy, exercise - show promise for disease modification.

10. Conclusion

Mitochondrial dysfunction is a central driver of PD, connecting impaired mitophagy, lysosomal deficits, α -synuclein toxicity, and neuroinflammation. Therapies improving mitochondrial health represent a promising pathway toward slowing or preventing neurodegeneration.

References

- (1) Bose, A., & Beal, M. F. (2016). *Mitochondrial dysfunction in Parkinson's disease*. *Journal of Neurochemistry*, *139*(1), 216–231. <https://doi.org/10.1111/jnc.13731>
- (2) Exner, N., Lutz, A. K., Haass, C., & Winklhofer, K. F. (2012). *Mitochondrial dysfunction in Parkinson's disease: Molecular mechanisms and pathophysiological consequences*. *The EMBO Journal*, *31*(14), 3038–3062. <https://doi.org/10.1038/emboj.2012.170>
- (3) Grünwald, A., Kumar Krishnan, K. J., & Turnbull, D. M. (2019). *Mitochondrial dysfunction in Parkinson's disease: A pathophysiological link to clinical features*. *Movement Disorders*, *34*(9), 1347–1356. <https://doi.org/10.1002/mds.27889>
- (4) Ryan, B. J., Hoek, S., Fon, E. A., & Wade-Martins, R. (2015). *Mitochondrial dysfunction and mitophagy in Parkinson's: From familial to sporadic disease*. *Trends in Biochemical Sciences*, *40*(4), 200–210. <https://doi.org/10.1016/j.tibs.2015.02.003>
- (5) Zheng, B., Liao, Z., Locascio, J. J., et al. (2013). *Mitochondrial dysfunction in Parkinson's disease: Lessons from experimental models*. *Neurobiology of Disease*, *51*, 273–284. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656616/>
- (6) Aflaki, E., Stubblefield, B. K., Maniwang, E., et al. (2017). *Lysosomal dysfunction and its role in Parkinson's disease*. *Acta Neuropathologica Communications*, *5*(1), 17. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5640195/>
- (7) Fernandez-Mosquera, L., Yambire, K. F., Couto, R., et al. (2022). *Mitochondria–lysosome interactions in neurodegeneration*. *Frontiers in Cell and Developmental Biology*, *10*, 828205. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233091/>
- (8) Truban, D., Hou, X., Caulfield, T. R., Fiesel, F. C., & Springer, W. (2017). *PINK1, Parkin, and mitochondrial quality control: What can we learn about Parkinson's disease pathobiology?* *Journal of Parkinson's Disease*, *7*(1), 13–29. <https://doi.org/10.3233/JPD-160871>
- (9) Wong, Y. C., & Holzbaur, E. L. F. (2020). *Parkin-independent mitophagy in neurons*. *Nature Communications*, *11*, 4868. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466131/>
- (10) Glinka, Y., & Youdim, M. B. H. (1995). *Inhibition of mitochondrial complexes by environmental toxins as a cause of Parkinsonism*. *Journal of Neurochemistry*, *65*(2), 764–772. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789900/>
- (11) Martin-Maestro, P., Gargini, R., Perry, G., & Avila, J. (2021). *Antioxidant therapies in Parkinson's disease*. *Current Neuropharmacology*, *19*(3), 223–237. <https://doi.org/10.2174/1570159X186662010261150189>
- (12) Yao, L., & Liu, Y. (2022). *Precision mitochondrial medicine for Parkinson's disease: Advances and perspectives*. *Frontiers in Neuroscience*, *16*, 841598. <https://doi.org/10.3389/fnins.2022.841598>