

GIORGIMGELADZE^{1,2}, SHORENA KHETSURIANI¹, KHATUNA GACHECHILADZE¹,
MAIA MIKELADZE¹, DAREJAN METREVELI¹

PREVALENCE OF EXTENDED-SPECTRUM BETA-LACTAMASES IN PSEUDOMONAS
AERUGINOSA STRAINS ISOLATED FROM NOSOCOMIAL PNEUMONIA

¹Microbiology Department of TSMU; ²Medical Company “Test-IMP”; Tbilisi, Georgia

Doi: <https://doi.org/10.52340/jecm.2025.04.11>

გიორგი მგელაძე^{1,2}, შორენა ხეცურიანი¹, ხათუნა გაჩეჩილაძე¹,
მაია მიქელაძე¹, დარეჯან მეტრეველი¹

გაფართოებული სპეცირის ბეტა-ლაქტამაზების გავრცელება ნოზოკომური პნევმონიის
მქონე პაციენტებიდან გამოყოფილ *Pseudomonas aeruginosa*-ს შტამებში

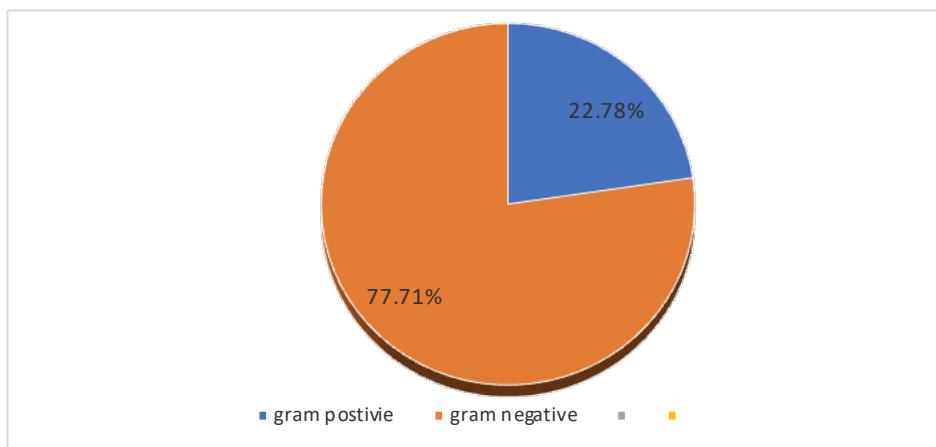
¹თსსუ მიკრობიოლოგიის დეპარტამენტი; ²სამედიცინო კომპანია “Test-IMP”; საქართველო

რეზიუმე

ნოზოკომური პნევმონია ჟანდაცვის დანესხებულებებში ავადობისა და სიკვდილიანობის მნიშვნელოვანი მიზეზია. მიუხედავად პრევენციული ზომებისა და ანტიმიკრობული თერაპიის მიღწევებისა, ინტენსიური თერაპიის განცოფილებებში იგი კვლავ ერთ-ერთ ყველაზე გავრცელებულ ნოზოკომურ ინფექციად რჩება და მნიშვნელოვან გავლენას ახდენს ჟანდაცვის სარჯებზე. პრობლემა განსაკუთრებით მნვავდება მულტირეზისტენტული პათოგენების არსებობისას. წარმატებული მკურნალობისთვის მნიშვნელოვანი საკითხია ამ ინფექციის გამომწვევი აგენტების იდენტიფიცირება. ბაქტერიებში გაფართოებული სპეცირის ბეტა-ლაქტამაზების (Extended-spectrum β-lactamases - ESBLs) არსებობა მნიშვნელოვანი პრობლემაა, რადგან ისინი დაკავშირებულია მულტირეზისტენტობასთან და აქედან გამომდინარე, განაპირობებს დაავადების გამოსავლის სიმძიმეს. შევისწავლეთ ნოზოკომიური პნევმონიით დაავადებული პაციენტებისგან გამოყოფილი ბაქტერიების შედგენილობა, გამოვავლინეთ მათ შორის ყველაზე გავრცელებული პათოგენი და მათში ESBLs-ების გავრცელება.

გამოყოფილი ბაქტერიული სახეობების იდენტიფიცირება მოხდა სტანდარტული საიდენტიფიკაციო სისტემების გამოყენებით. სულ იდენტიფიცირებული იყო შვიდი სახეობის ბაქტერიის 158 შტამი (*P.aeruginosa*, *A.baumannii*, *K.pneumoniae*, *Enterobacter spp.*, *S.aureus*, *S.pneumoniae* და *E. coli*). გრამ-უარყოფითი ბაქტერიები მნიშვნელოვანად უფრო ხშირი იყო (77.21%), ვიდრე გრამ-დადებითი ბაქტერიები (22.78%). ყველაზე გავრცელებული იყო *P.aeruginosa*-ინფექცია (31.01%). მულტირეზისტენტობის განმსაზღვრელი ერთ-ერთი ფაქტორი - ESBLs, მაღალი სიხშირით გამოვლინდა *P.aeruginosa* შტამები (93.87%). მიღებული შედეგი მიუთითებს ნოზოკომიური პნევმონიით დაავადებული პაციენტებისგან გამოყოფილი ბაქტერიების მრავალფეროვან სპეცირზე, რომელშიც ძირითადი პათოგენები გრამ-უარყოფითი ბაქტერიები იყო. გრამ-უარყოფითი ბაქტერიების ეს სიხშირე ასახავს მათ მნიშვნელოვან როლს ნოზოკომიური პნევმონიის განვითარებაში. ნოზოკომიური პნევმონიის მქონე პაციენტებში ეტიოლოგიური აგენტის იდენტიფიცირება ხელს უწყობს ინფექციის სათანადო მონიტორინგს და ოპტიმალური მკურნალობის ტაქტიკის განსაზღვრას.

Introduction. Nosocomial pneumonia remains a significant challenge in healthcare settings, leading to considerable morbidity and mortality despite advancements in preventative measures, technology, and antimicrobial therapies. It is one of the most prevalent nosocomial infections in intensive care units. This condition impacts patient health and also substantially increases healthcare costs, particularly when the causative pathogens exhibit multidrug resistance [1,2]. Risk factors for developing nosocomial pneumonia include extended hospital stays, mechanical ventilation, advanced age, underlying health conditions (such as chronic lung disease or immunosuppression), invasive procedures, and aspiration of secretions [3]. Common pathogens responsible for nosocomial pneumonia include bacteria - *Staphylococcus aureus*, *Pseudomonas aeruginosa* [4], *Acinetobacter baumannii*, and


ESBL-producing *Enterobacteriaceae*, as well as viruses and fungi in some cases [4]. Treatment usually involves antibiotics tailored to the specific pathogens identified through cultures and sensitivity tests, which are crucial in addressing bacterial multidrug resistance.

The prevalence of ESBL-expressing bacterial strains has increased significantly in many countries, making these bacteria resistant to various antibiotic groups and complicating effective treatment regimen development [5]. The spread of ESBL infections has characteristic considerable variation between countries and in different clinical situations [6]. Patients infected with bacteria that produce ESBLs (extended-spectrum beta-lactamases) might need treatment with more potent antibiotics such as carbapenems. These antibiotics are typically kept for severe or high-risk infections because they have broad-spectrum activity and are resistant to most beta-lactamases [7]. Identifying the specific pathogens involved in nosocomial pneumonia is essential for effective infection monitoring and the formulation of optimal treatment strategies. This approach helps in tailoring antimicrobial therapies to target the identified bacteria, potentially improving patient outcomes and reducing the incidence of multidrug-resistant infections.

Our study aim was to identify bacterial profiles isolated from patients with nosocomial pneumonia, to define the most frequent pathogen, and to identify ESBL strains.

Materials and Methods: Microbiological examination and results analysis were conducted in the medical company “Test-IMP” and the Microbiology Department of TSMU (2021-2023 years, Tbilisi, Georgia). All samples (blood and sputum) were taken from the patients with confirmed diagnosis of nosocomial pneumoniae. Bacterial identification (158 gram-negative and gram-positive strains) and antibiotic susceptibility tests were done under the standardized identification systems (*EUCAST* guidelines) [8,9]. Biochemical identifications (Api staph, Api NE, Api20e, Api strep) were used for bacterial species identification (bioMérieux, France) - API 20E, API 20NE, API STAPH, API 20STRE). Also, were performed serological methods (immunochromatographic test).

Diagram N1. Distribution of Gram-positive and Gram-negative bacteria

Results: Study results revealed that causative agents of nosocomial pneumonia were *Pseudomonas aeruginosa*, *Acinetobacter baumannii*, *Klebsiella pneumoniae*, *Enterobacter* spp., *Staphylococcus aureus*, *Streptococcus pneumoniae*, and *Escherichia coli*. Identified Gram-negative and Gram-positive bacteria are summarized in the diagram N1. Gram-negative bacteria were much more frequent (122 strains, 77.71%) than Gram-positive (36 strains, 22.78%). Seven bacterial species were identified - *P. aeruginosa*, *A. baumannii*, *K. pneumoniae*, *Enterobacter* spp., *S. aureus*, *S. Pneumoniae*, and *E. coli* (Table N1). *P. aeruginosa* strains were the most frequently isolated (49 strains, 31.01%)

bacterial species (Table N1). *K. pneumoniae* strains and *A. baumannii* were isolated in relatively small and almost equal numbers (20.88% and 17.72%, respectively). Gram-positive cocci - *S. aureus* (13.29%) and *S. pneumoniae* (9.49%) were isolated in low frequency. *Enterobacter* spp and *E. coli* were identified in the lowest numbers (5.69% and 1.89% of cases). Also, detected the spread of one of the factors determining multidrug resistance - ESBLs, in *P. aeruginosa* strains. ESBLs were detected in high frequency in these strains (93.87%).

Table N1. Identified Bacterial Species in Patients with Nosocomial Pneumonia (n=158)

Bacterial species	abs. number and %
<i>P. aeruginosa</i>	49 (31.01%)
<i>A. baumanii</i>	28 (17.72%)
<i>S. pneumoniae</i>	15 (9.49%)
<i>S. aureus</i>	21 (13.29%)
<i>K. pneumoniae</i>	33 (20.88%)
<i>Enterobacter</i> spp	9 (5.69%)
<i>E. coli</i>	3 (1.89%)

Conclusion. The study results indicate a diverse spectrum of bacteria isolated from patients with nosocomial pneumonia, in which Gram-negative bacteria were the main causative agents. They were isolated three times more (77.71%) than gram-positive bacteria (22.78%). *P. aeruginosa* infection was the most common (31.01%). ESBL-positive *P. aeruginosa* strains were identified in 46 cases (93.87%). Identifying the causative agent in patients with nosocomial pneumonia contributes to effectively monitoring the infection and selecting the best treatment strategies.

References:

1. Bassetti M, Mularoni A, Giacobbe DR, Castaldo N, Vena A. New Antibiotics for Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. *Semin Respir Crit Care Med.* 2022 Apr;43(2):280-294.
2. Pickens CI, Wunderink RG. Methicillin-Resistant *Staphylococcus aureus* Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia. *Semin Respir Crit Care Med.* 2022
3. Blot S, Ruppé E, Harbarth S et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. *Intensive Crit Care Nurs.* 2022 Jun;70:103227. doi: 10.1016/j.iccn.2022.103227.
4. Reina R, León-Moya C, Garnacho-Montero J. Treatment of *Acinetobacter baumannii* severe infections. *Med Intensiva (Engl Ed).* 2022 Dec;46(12):700-710. doi: 10.1016/j.medine.2022.08.007.
5. Ahmed, N.; Tahir, K.; Aslam et al. Heavy Metal (Arsenic) Induced Antibiotic Resistance among Extended-Spectrum β -Lactamase (ESBL) Producing Bacteria of Nosocomial Origin. *Pharmaceuticals* 2022, 15, 1426. <https://doi.org/10.3390/ph15111426>
6. B.Seni, J., Sweya, E., Mabewa, A. et al. Comparison of antimicrobial resistance patterns of ESBL and non-ESBL bacterial isolates among patients with secondary peritonitis at Bugando Medical Centre, Mwanza – Tanzania. *BMC Emerg Med* 16, 41 (2016). <https://doi.org/10.1186/s12873-016-0106-1>
7. Islam, S. U. (2023). Antibacterial drugs. In *Elsevier eBooks* (pp. 119–148). <https://doi.org/10.1016/b978-0-443-18742-1.00054-3>
8. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 13.0, 2023. <http://www.eucast.org>.
9. The EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance Version 2.01 July 2017; 43p.

GIORGIMGELADZE^{1,2}, SHORENA KHETSURIANI¹, KHATUNA GACHECHILADZE¹,
MAIA MIKELADZE¹, DAREJAN METREVELI¹

**PREVALENCE OF EXTENDED-SPECTRUM BETA-LACTAMASES IN PSEUDOMONAS
AERUGINOSA STRAINS ISOLATED FROM NOSOCOMIAL PNEUMONIA**

¹Microbiology Department of TSMU; ²Medical Company “Test-IMP”; Tbilisi, Georgia

SUMMARY

Nosocomial pneumonia remains a significant cause of morbidity and mortality in healthcare settings, despite advancements in preventative measures, technology, and antimicrobial therapies. It is among the most common nosocomial infections in intensive care units and has a substantial impact on healthcare costs, particularly when involving multidrug-resistant pathogens. Identifying the causative agents of this infection is crucial for successful treatment. The presence of extended-spectrum β -lactamases (ESBLs) is significant as they are associated with multidrug resistance and therefore determine the severity of disease outcome.

We studied the composition of bacteria isolated from patients with nosocomial pneumonia, identified the most frequent pathogen, and spread ESBLs in these strains. Isolated bacterial species were identified by standardized identification systems. A total of 158 strains of seven bacterial species were identified (*P.aeruginosa*, *A.baumannii*, *K.pneumoniae*, *Enterobacter spp.*, *S.aureus*, *S.pneumoniae*, and *E.coli*). Gram-negative bacteria were significantly more prevalent (77.21%) than gram-positive bacteria (22.78%). *P.aeruginosa* infection was the most common (31.01%). One of the factors determining multidrug resistance, ESBLs, was detected in high frequency in *P.aeruginosa* strains (93.87%). This result indicates a diverse spectrum of bacteria isolated from patients with nosocomial pneumonia, in which gram-negative bacteria were the main causative agents. A high frequency of ESBLs was also detected in the most prevalent *P.aeruginosa* strains. This predominance of gram-negative bacteria underscores their critical role as the main causative agents of nosocomial pneumonia.

Detection of the etiologic agent in patients with nosocomial pneumonia contributes to proper monitoring of the infection and determining the optimal treatment tactics.

Keywords: nosocomial pneumonia, *P. aeruginosa*, extended-spectrum β -lactamases

