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A RECTANGLE SUPPORTED ON ALL FOUR SIDES DETERMINATION OF THE
MAXIMUM NORMAL STRESSES IN THE SLAB ONE OF THE SIMPLIFIED METHODS
Demur Tabatadze, loseb Kakutashvili, Davit Jankarashvili
Georgian Technical University, M. Kostava St. 77, 0160, Georgia

Abstract: The article presents the
etermination of maximum bending, bending
moments and normal stresses in rectangular
slabs supported by four lateral hinges by one of
the simplified methods, which is called the
method of intersecting rods.
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Introduction

One of the most common elements in buildings
is a slab, which is calculated using the theory
of plates. If a continuous body (continuum) is
meant in the geometric model of the
calculation scheme of the plate, then its
calculation by the theory of classical elasticity
will be reduced to solving a system of
differential equations of complex structure,
which is associated with great (often
insurmountable) mathematical difficulties
[1,2,3]. Because of this, a technical theory has
been developed for plates in engineering
practice, the basis of which is the hypothesis of
a rigid normal (Kirchhoff's hypothesis. Using
this hypothesis, a private differential equation
is derived in the technical theory of plates. The
solution of this equation in a direct way (i.e. by
integrating it) is possible only for some simple
cases (in particular, for circular and ring
plates). Therefore, they resort to indirect
solution  methods, for example, the
representation of the bending function in the
form of trigonometric rows (the methods of
Navier, Levy and others), which are also quite

time-consuming [6]. Therefore, it was
necessary to create such methods that would
reduce within the framework of the technical
theory Computational operations. One of these
methods is based on the representation of the
calculation scheme of a slab with intersecting
rods. The representation of the calculation
scheme as sub-schemes according to the
boundary conditions transforms a two-variable
problem into two one-variable problems,
which are combined by constructing the
equation of compatibility of deformations
representing the condition of body continuity
in the form of canonical equations of the
method of known forces. The latter can be built
only for a specific accounting scheme [7,8].
The construction of compatibility equations
considering only bending deformations gives
results of insufficient accuracy with the
traditional method. compared to the results
obtained. A way to overcome this inaccuracy
is to consider twisting deformations along with
bending deformations.

Main part

Option I

Fig. 1 presents the so-called The given system,
1.e., a rectangular plate hinged at all four edges,
is subjected to a uniformly distributed load of
intensity gq. Our objective is to determine the
maximum deflections, bending moments, and
normal stresses along the major axis passing
through the center of gravity of the slab.
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Fig.To do this, let's present the given system
(slab) with a combination of y and @ stone
schemes (Fig. 2). v According to the diagrams,
the tile is attached only by the right and left
edges, and we mean that it has turned into a
rod,

which is loaded as With an external
(operating) uniformly distributed load with a
given q intensity, as well as with an equally
distributed interaction load with an intensity
q*, which are actual parameters and act on the
rods presented in the sub-diagrams as external
force factors. @ In the sub-scheme, only the
actual load with intensity q* acts on the rod.
We can put a load with a real intensity q on the
rod of the @ subcircuit, and then a fictitious
load with an intensity of q* will act on the rod
of the y subcircuit.g A load with an intensity
of g=1 causes a displacement; a load with an
intensity of q=1 causes a displacement, and the
same =1 load causes a displacement in the rod
of the sub-circuit. All these displacements are
defined only considering bending
deformations. in factBy the scheme w, the
bending of the rod causes @ By the scheme, the
stem is twisted into the stem of the scheme and
vice versa. Therefore, it is necessary to
determine the vertical displacements caused by
the twisting moment in both the vy, and @
subframe rods. These are , and .The deflection

causes N""(x),
/_

The vertical displacements, taking into account
the joint action of the bending moment and the
twisting moment, will be:

A(x) = A" (x) - A""(x) ;

A(x) = A" (x) - A" (x);
6(»)=6"(y)-6""(y). (1
Since these displacements reach a maximum at

the point ¢ where the x and y axes intersect,
therefore

AN =AY A", oY =01 -0'";
ol =0"-0"". ()
The compatibility condition of vertical

displacements (maximum bending of rods) at
point ¢ will have the form:

A =6"q =6"q", 3)

Al

S +8° )

The right-hand side of (3) represents the
vertical displacement of point ¢ in the scheme
®, which is the maximum displacement in the
slab, since both sides of equation (3) reflect the
equality of the displacements at point c, both
w, and @ in the rods of the scheme, which
means the maximum displacement of the slab.
Thus

5'q =W, ()

where W, -th The vertical bending of the slab
is noted.

from where ¢ "=

v

9
C
q*
0= =AY
e, T
fig. 2
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Let's define it firstA”?, 6Y¢ and 5™

displacements. For this, we use the calculation
scheme of the rod presented in Fig. 3,
according to which

sl 232 2

where b is the width of the rod

Since the cross section of the rod is
rectangular. Hence its moment of inertia
I, =b*/12 . ie.

—x* —a’x), (6)

b _ ¢ 7
3 3°
23E bi*  2Eh
12

considering this

A? = A%(x=0,5q)=—-0,15631L ga-
El’

a4
A! =-1563—. 8
max E[3 ( )

turning angle

q
DY(x) = dAdx(x) T (6ax’ —4x> —a’), (9)
0.5a 0.5a
X ¥ o

—
@ pa
4

(D:;ax (DG"
Al
Fig. 3
ab
M, —
d =—% (15)
o GI

ar

Since (see [4] p. 221, Fig. 23.6), (14) will
take the form since

D! =@(x=0)= 05‘1" (10)

max

Thus
i 4
AV = AV = 01563  gvo = Q1003
Eh
0,1563b*
5 =220 11
2 X (11)

A, 6" and 6" To determine the

displacements, we use the scheme presented in
Fig. 4, according to which

A" () = 22 (- ), (12)
2
ma
A" =A"(x=0,5q)=1,5——, 13
max ( ) Eh3 ( )
dA"(x) mb
O"(x)=——==—(a—2x),
) dx El(a %)
* 2F—
12
m.(14)
m

<

N

max

max
max

fig. 4
0,25¢
o == (16)
gr e Gl ar
As 1s known, the shear modulus
G= _£ , (17)

2(1+v)



SCIENTIFIC-TECHNICAL JOURNAL,”BUILDING® #1(69), 2024

where v is Poisson 's I, ratio, and [see [4], p. L= ah®, (18)
218, formula 35,6) is the torsion moment of fig.5 according to the scheme presented
inertia and is determined by the formula in Figure 5 (see [4] p. 222
mye(y1) A /y /yz ey
,, V e

Fd
‘ m?)(ﬁ(y2)
b / A / -
«;2/ y
i a —
A 1
fig. 5
where h is the thickness of the plate, and the (25)
coefficient « is taken from the table (see [4], We will take it in a completely similar way
p. 219, table 1.6) according to 0.5a/b (because qa’
: . _ md =——————. (26)
according to Fig. 5 m,,(y,) =m,,(y,) and each % 5 a(l+v)
+ _— Z
will affect half of the page a a,-b-h
Insert (17) and (18) into (16) Based on (8).
0,5(1+v)/ : :
o -, T 19 Awmzl,sa_mq. 5wm:1,5a_.
e " Eah® (19) ‘ ER ‘ ER’
Based on (10). s 15 b? -
-0,5ga’ gb’ e T g3 27}
¢ . Eh Bending values considering interaction
; v v @
Based on (14), we w1llbhave momentsA”, 6V and J; are calculated by
I = 6% L B = 6E—h3 . (1) means of (2) and by entering them into (4) q*
According to (19). is determined, and by means of (5) .. S
0,5(1+v)b 0,5(1+v)b 55 W.-s - After the definitionan W (y) and
o Eo h' >t Eah' 22) W(x), it can be expressed using the 6-th
the condition of compatibility of formula:
. . . . 2 3 _ 4 - 3
defomatlons (in this case, thp equality of Wx)=W ax’ —x —a’x ’ (28)
rotation angles y, around the axis, for example °0,31254"
];’]q -my +(qu :[;’q -m . (23) — 2by° — y* — by 2
=W, 3 (29)
from where 0,3125b
. o If we assume that the maximum deflection of
My, = 2N (24) the rod is equal to the maximum deflection of
#ooo ‘ the plate, we have
By entering the corresponding parameters of AV =W, (30)

20), (21) and (22) into (24), we get ) ]
(20), 1) 22) (29), we g We can determine the uniformly

3
0,2529 distributed load ¢’ for the rod, which will

3 2
m;’l =— Eh( =y = %C(ZIH}) . cause the maximum load in the rod, which
6—+0,5 - 12+ would be caused by the uniformly distributed
Eh Eay,-h a,a-h load q in the plate.
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According to (8 2 4
SR - 24+ n 2 205602
. . ab ) Y,
Let's msel;t (30) into (31). .according to( 8).
0,1563q'a 4
=gy e (32) A" =0,1563 ‘123 =
from where
W 0,1563—L 19,539 sve 1933
=" ¢ (33) E-0,008 E E
17 0,15634"
’ d according to( 27).
Basedon3' W_I,Sazm 15 .00186l—
M, (x)= %(ax—xz), (34) © " ER Y E.0,008  E
then 3,491; oY = %
M =M, =M, (x=0,5a) = %032502 =0,125¢'a> = according to( 2).
_ 1195 EWw.a® 0,8-W.ER 35) AZ.’=(19,53—3,49)%:16,04%;
T 0,15634" a 5” =16.04
S(;n;ﬂ;;lz}f according to( 26).
MY =22 (36) v qa*
& b2 AC = 0,1563@' =
moments of resistance 16 P
bh? h 0,1363 ———=312,6—=;
== y:"?. (37) E-0,008 E
Maximum voltages HEpOTAing, t( 27,
2
. M A;“’”:l’5b3 m =% 0 9811-210,8L
e =0 = (38) ER’ " E-0,008 E
y ;according to( 2).
Jy = O'y = MC (39) q q
max = G = A7 =(312,6-210,8) - =1018-;
Numerical example:a=1m;b=2m; h 101.8
= 0.2 m; q = 2 kN/cm2; E=3000 kn/cm2; oY =T’.
v=0,3. according to( 4)
solution. o, and «, we determine the = ' q
coefficients from the table, see ([4] p. 219, . AY 16,04
Table 1.6) using interpolation according to q = 5" +5° ~16.04 1018 =0,1361q.
0.5a/h and 0.5b/h): © T+ £
0,790-0,456 .
a,=0,457+ — 5 - 0,6235, according to( 28).
101,8-10°
— o W . * — —’ 2 L —_—
" :1’123+1,78921,123 _1.456. W.=o6"-q 3000 0,1361-:2=0,92 sm.
according to( 24). ascordimg tof 24).
2
qa q 3 3 3
M, = = =0,0186q 0,8W.ER° 0,8-0,92-3-10°-8-10
N . 2 My = 4 = = 442
g AT g5, 6B Ty 4.10°
aa h 0,6235-0,2 kn.om,

.according to (26)
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EW . .3.10°-8-10° .10%-4-10%
fZO’SWZ h _0,8-0,92 3210 8-10 1766 W:410 4-10 26667 em’:
a 10 g
kn.cmb. M 1766 2 2
according to( 37). e T T 6667 0,26 kn/em™= 26 kg/em?;
M; 442
2 10%-1-10% ol=—2=—"_=0,017 kn/em’= 1,7
/8 o bl e cm’; CWr 26667
6 kg/cm?;
The calculation results are presented in fig.6
by <Es s
T*luu—_——s TR 23
. L
| ! =
21 L
| P gl -
N
| < | > x . k
| !
| | N
| | ] /
L L | 1l Ll J
_05a Y}
b e
¥ ¥ ¥ vy 3
5 0,92 e
W, (sm)
(1760 M (kn.sm)
/26
. / ox (kg.sm)? fig. 6

Option 11

Fig. 7 shows a rectangular slab hinged at
all four edges, the bending force F acts at the
point C of the intersection of the main axes. In
this option, the maximum bending, bending
moments and normal stresses on the main axes
passing through the center of gravity of the slab
should be determined

In this case as well, let's imagine the
given system (plate) as a combination of y and
@ sub-schemes (Fig. 8). v According to the
sub-scheme, at the point C of the plate, an
external bending force F* is modeled as shown
in the scheme. This is the actual force

56

parameter and acts on the rods represented in
the sub-diagrams as external force factors.
In the sub-scheme, only the F* force acts on

the rod. The force F A" (x)
displacement in the y subcircuit; . F = 1 force
-0""(x) causes displacement in the same

causes

scheme, and F=1 force w causes displacement
in sub-scheme d“/(y). These displacements
are determined by considering bending
deformations only. In fact, the bending of the
rod in the w scheme causes a twist in the @
scheme rod and vice versa. Therefore, it is



SCIENTIFIC-TECHNICAL JOURNAL,”BUILDING® #1(69), 2024

necessary to determine the  vertical displacements of moments caused by bending
displacements caused by the twisting moments and twisting are represented by equations (1).
in both the AY"(x),56""(x) and S8“"(x) Since these equations reach a maximum at the

subframe members. These are, and Vertical point C of the intersection

of x and y, equations (1) take the form (2).

T)’
ya 05_a 4 Q_.Sa

>

AN
™~
|

0.5

| |
| |
H— o
{ |
| |

PLED
|
|
|
|
|
|
|
|

fig. 7 fig. 8
It will be a condition of compatibility of
movements S5 -F =W.. (42)
A =S F =0, F. (40) First we are borderingA’”, 5" and
o wihers T — WAZ/ _. (41) 5°"  displacements. A" -s and &' -s For
8 +9, determination, we wuse the well-known
In this case, too, the right part of (40) calculation scheme (see Fig. 9), according to
reflects the vertical displacement of point C in which

the tile, and therefore

F
o
ﬁ%_‘._f_.. ey B X

J( b.Sa
A

4 v 0.5a 7’,
A 5?/
(DZm.\ A(I (Dq

max

Fig. 9
- Fb(, & a therefore
= B — . < < et
A" (x) 121 X +4x ; 0_x_2 , (43) s i o . er »
@ 30 c 3 c 3"
where b is the width of the rod. Ebh Ebh Eah
When x = 0.5a, then (44)

turning angle

3
AF(x=0,5a)= AF, =329
Ebh
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oF ()= 20 _ i{sxz +“7:J L 45)

dx Eh
since
Fa
o =0"(0)=——. 46
max ( ) Eh3 4 ( )

Taking into account the sub-schemes presented
in Fig. 8, we will have:

F 2. 2
orF 20,2579 I*F=0,25—;
Eh Eh

2
1 =0,252
Eh
A" (x) -we use the calculation scheme of
the first option (Fig. 4) to determine, because
in the first and second options the slab is
supported in the same way (on all four edges).
3 2
Af’":l,sF—a-mF- 5;”’”=1,Sa—3;
Eh

(47)

EhS »n?
2
5 = 1,5;—]13. (48)

myFl To determine the moment, we use the
condition of compatibility of deformations
(compatibility of rotation angles) around y,
axes (see Fig. 5):

=1 my @Y =17 my (49)
from where
or" F
v 50)
@ ¢ 1+
o
from where It is obtained in a completely
. F
similar way mg = 5 (51)
1+a—3
b

AY, 6 and 6 are calculated by means of
(2), then by means of (4) -q* and finally by
means of (5) Wc. After all, we can express
W(x) and W(y)(43) using the function in (43)
x*+0,25a%x )

0,254
V' +0,25b%y

0,250
If we assume that the maximum deflection of
the rod is equal to the deflection of the plate,
we have: A" =W (53)

o

W=7,

W)= W, (52)

58

so we are given the opportunity to determine
the magnitude of the bending force F ' which
will cause the maximum load in the rod that
was caused by the bending force F in the plate.

According to (44).
F'a’
W= : 54
°  EbW 9
Let's insert (53) into (54).
F'a’
= 55
° EbK )
from where
, EbW'W,
F'= 7 4 56)
a
Based on Fig. 3
F’ Ebh’
M(x)=—x:O,5#. (57)
2 a
When x =0,5a, thena:
E 3
Mx)=M.=0,25 bzh .(58) similarly
a
obtained
3
M =0,25W, Ebzh . (59)
a
According to (37) resistance moments
bh’ . ak’
wr =20y 24 (60)
6 6
Maximum stresses according to (38) and (39).
M M’
o, =—=%;0 =—=%. (61)
w w?

A numerical example.a=1, b= —2m;
h=0,2m; F=100kn; E =3000kn/sm?, v=0,3.
ion. As in the first optiono, = 0,6235;

a, =1,456.
According to (50)-.
mf=L2:L=E=o,11F;
w809
1+— 1+
a’ 1
- F F F
I’I’lxl = 5 = 1 :1 125 — 5
1+ 1+-
b 8
According to (44)
3
Z/F: Fa3: F-1 :187, E’
Ebh E-2.0,008 E
i _g 1-0,11F F

A =1,5——-m" =1,5

. =10,625~.
ER 7T E-0,008 E



SCIENTIFIC-TECHNICAL JOURNAL,”BUILDING® #1(69), 2024

According to (2)- According to (35)
3
AY = (187,5-20,625) 2 =167 ; s0 « _O8-WERN _
E E c Cl2
167 3 3
By = 0.8-5,2 foio 810" _ 998400 kn. sm
Acc;?;iing to (4;) . . - 0,8-W BN )
A =3 S E o0 00 A
a . . 5 3 3
According to (27) Usbidyet:0 1(2) Lt =249600 kn. sm.
1,56 1,5-4 F 4-10
A" = ,ET m, = m -0,9F =675 = moments of resistance
RS . bh’ 2:10°-8-10°
According to (2) W= ra = 6 =267-10° cm?;
F F
A? =(3000—-675)—=2325—; L.e. 3 .10%-8-10°
e = VE E e =20 LB o 108 e,
o 2325 . 6
6, = “E Maximum voltages
According to (4) o = M, _ 998400 _ 7.51kn/cm?;
F Wt 133-10° ’
F' = AT _ g =0,067F " —ﬂcy—249600—181k/ 2
Cov+sr 167 2325 T =y T 133000 e
E E The calculation results are presented in
According to (42)- According to it fig.
WC=5f’-F*=%-O,O67~102=5,2cm. _ ’g &
E 2 g
_ Y __ SO
A — ! Cg W
. =)
2 | i
< [ ~ 8B
. <t "
| ‘ | L
N o P 5y > ™
i |
51! |
= { l
{ |
N ) I S £
lF
. -
]/5.2 -
~ 9984 - 10
WM (kn.sm)
7.51
\}// o (kg/sm?)
Fig. 10
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Conclusion

Since in the discussed examples, the joint
consideration of bending and twisting
deformations brought the maximum bending with
great accuracy to the results obtained by the
traditional method, i.e. the representation of the
bending function by trigonometric rows.

The method of determining the voltages presented
in the article, which is based on the representation
of the calculation circuit as a set of sub-circuits, is
quite convenient for solving practical problems.
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