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Abstract. In the paper, the stationary
joint rotation of a porous circular plate and
the surrounding conductive fluid is studied by
the Shvetz method (method of successive
approximation), taking into account the
magnetic field and heat transfer, when the
suction velocity changes according to the
linear law.

In order to solve the problem, the Navier-
Stokes differential equations of fluid motion
in a magnetic field and energy nonlinear
differential equations in partial derivatives by
using generalized Karman transformations are
reduced to ordinary nonlinear differential
equations, the solutions of which are sought in
the form of infinite series. The first two
approximations have been clearly calculated,
which determine the distribution of fluid
velocity, temperature and pressure in the
dynamic and thermal boundary layers formed
on the circular plate.

In order to calculate the thicknesses of the
dynamic and thermal boundary layers, the
appropriate equations are obtained and the
exact solutions of these equations are
recorded. In a particular case, the relationship
between the thicknesses of the dynamic and
thermal boundary layers is determined. The
moment of resistance to rotation of the plate
and the heat transfer coefficient are also
calculated.
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Introduction.
The differential equations of viscous fluid
motion and the energy equation were derived
in the middle of the XIX century. As is known,
The fact that the effect of viscosity should
be felt in the vicinity of the surface of the
enveloping body was indicated as early as by
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problem of the boundary layer formed by the

they represent the mathematical formulation
of the laws of conservation of mass,
momentum and energy for an elementary
volume of a liquid or gaseous environment.
These equations are the basis for the
theoretical analysis of problems related to
fluid dynamics, heat transfer, subsonic and
supersonic flows, and many other flows. The
considered equations are second-order private
derivative nonlinear differential equations,
which determines significant difficulties in
their solution.

Until the beginning of the XX century, the
theoretical solution of many practically
important problems of heat transfer and
hydrodynamics was difficult. This is
explained by the fact that the Navier-Stokes
differential equations of fluid motion and the
energy equation cannot be analytically solved.

In the XIX century, some problems were
solved in the special case when the inertial
forces in the Navier-Stokes equations are
equal to zero. One of these tasks is to
determine the hydraulic resistance during
laminar flow of liquid in a pipe.

Using Euler's equations (equations in which
the action of viscous forces is not taken into
account), the velocity field in the vicinity of
the surrounding body can be calculated, as
well as the pressure forces on the surface of
the body can be determined. However, the
ideal fluid theory cannot explain the reason for
the emergence of vortices in the rear part of
poorly enveloping bodies. In the case of the
transverse girdle of the cylinder, this leads to
Dalember's paradox: due to the symmetrical
distribution of pressure around the surface of
the cylinder, the resistance force is zero.

D. Mendeleev (1880) in his studies, which
were devoted to the study of the resistance
generated during the movement of bodies in
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a liquid.

Experiments and important theoretical
considerations indicate that in some cases
fluid motion is significantly affected by the
fact that the fluid does not slide only
immediately near the boundary in the thin
layer covering the surface of the enclosing
body. In this regard, the theory of the
boundary layer, inside which the viscosity
cannot be neglected, and which makes sense
for large values of the Reynolds number, was
born.

Boundary layer theory is one of the
important parts of modern hydromechanics.
This theory was founded in 1904 by by L.
Prandtl [1] in a paper presented at the
International Congress of Mathematicians in
Heidelberg.  Prandtl  formulated  the
equations, which are satisfied in the first
approximation by the speed of fluid
movement in the boundary layer. These
equations are called the Prandtl system. They
form the basis of the boundary layer theory,
which has been  intensively developed for
more than a century.

Prandtl divided fluid flow into two regions:
one, inside the boundary layer, where
viscosity plays an essential role and most of
the resistance experienced by the surrounding
body, and the other, outside the boundary
layer, where viscosity can be neglected
without significantly affecting the fluid. This
idea makes it possible to significantly
simplify the system of Navier-Stokes
equations. Much of the heat transfer to and
from the body also occurs within the
boundary layer, again simplifying the energy
equation for the fluid flow field outside the
boundary layer.

The works of Carman [2] and Cochrane
[3] were devoted to the study of problems
related to fluid flow caused by the rotation of
an infinite plate or disk with a large radius.
They wused transformations (Kérman
embeddings) that allow nonlinear partial
differential equations of fluid motion to be
written in the form of ordinary nonlinear
differential equations, which makes it
possible to study the nature of the flow more
deeply.

From a practical point of view, it is
interesting to study problems related to the
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movement of porous axisymmetric bodies
surrounded by liquid. Stewart [4] was one of
the first scientists who studied in his work the
influence of the suction velosity of liquid
from the surface of a porous circular disk on
the flow of liquid generated by the rotation of
the disk.

Many scientists are interested in the study
of such stationary and non-stationary
problems related to the flow of electrically
conductive fluid in the boundary layer, when
the influence of a weak or strong magnetic
field and thermal effects are taken into
account in the vicinity of the surfaces of the
surrounding porous bodies.

In the work [5], the non-stationary problem
of the boundary layer formed by the rotation
of a porous plate in a weakly stationary fluid
is studied, taking into account the heat
transfer, when the same fluid flows into the
plate at a rate that is a time-dependent
quantity. The thicknesses of the dynamic and
thermal boundary layers for different values
of the suction velosity are determined and the
functional relationships between them are
established.

In the paper [6], the non-stationary
problem of the joint rotation of an infinite
porous plate and the surrounding fluid is
studied by the sequential approximation
method, taking into account the magnetic
field and heat transfer, when the coefficient
of electrical conductivity and the suction
velosity are temperature-dependent
quantities.

In the work [7], the stationary problem of
the boundary layer formed by the rotation of
a porous circular plate in a conductive liquid
is studied by the method of sequential
approximation, taking into account a weak
uniform magnetic field and heat transfer,
when the fluid suction velosity in the plate
changes according to a linear law.

Main part.

In the present work, the stationary task of
the boundary layer formed by the joint
rotation of a circular porous plate and the
surrounding fluid is studied by the method of
Shvets [8], taking into account the magnetic
field and heat transfer, in the case of variable
suction velosity.
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Let's say a porous circular plate of radius R
rotates about an Oz axis with an angular
velocity W in an electrically conducting
fluid, which in turn rotates with an angular
velocity W,. Let's assume that the same

liquid 1s leaking through the plate with a
speed u varying accordlng to the linear law,

a  uniform B magnetic  field acts
perpendicular to the plate, its temperature is
T, and the temperature of the liquid is 7, at

infinity. The goal of the task is to study the
fluid flow in the vicinity of the plate and
determine all the physical and dynamic
characteristics of the fluid.
Consider that at a long distance from the
plate, where there is no friction [10], we have
J__(,)E =02,
p o ;
Then the system of Navier-Stokes differential
equations and the energy equation of the
motion of a conductive fluid in a magnetic
field will be written in the following form
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In the energy equation, we consider that the
influence of dissipative members on heat
transfer is infinitesimally small. To solve the
system of equations (1) and equation (2), we
use the following boundary conditions:

o= {]; 't"‘r — 0" ,U‘yf' = er’ ?"‘: = _.Uu‘-’
r=r1., )
I=00, U = [}, ?_?F = Q:r, T= T_\_.

From mechanical considerations, if we
introduce new functions and make the
following transformations of variables

v, (r,2) = rw f () v, (r,2) =rwg(n),
v,(2) = w g(),

(o) = u, (), pl2)=—pr P(m), &)

n= JE z, T(z)=T_+(T, —T_)8(m),
14

then, by means of them, (1) system of
equations and (2) equation will be written in
the following fOI‘l’n'

dzf

1 r____ 2
o i g
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an” T dny

; : B?
In the obtained equations, m? = c;—w and

p =t

Prandtl numbers. Let's say the suction
velosity in the plate changes according to the
following law:

Uy, = —by
where b is a positive number.

In order to calculate the thicknesses of
the dynamic and thermal boundary layers
formed on the surface of the circular porous
plate rotating in the liquid, instead of the
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asymptotic layers, the layers of finite
thickness are considered. To determine their
thickness, we use the following conditions:

77:5,ﬂ:0and 77:5T,ﬁ:0. (7
dn dn

Finally, from all this, the system of
differential equations (5) and equation (6)
must be solved under the following boundary
conditions:

n=0, f=0,g=w,g=u,(0)=0,
6=1,
d.
n=6, =0, g=aw,, L=, (8)
dn
n=46,, 0="0 ﬁ=D.
dn

Let's look for the solutions of system (5) and
equation (6) in the form of infinite series

f:Zf;, q:zqz"
=0 =0

£=2.8, 0=206,
=0 =0

and limit ourselves to defining the first two
approximations.

If we calculate the first two
approximations of the f, ¢, g and g¢
functions, then we will have the following
expressions  for the fluid velocity
components, temperature and pressure:
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To calculate the thicknesses of dynamic and
thermal boundary layers, using the conditions
(7), the following equations are obtained:

(m* +2b)5> —6=0, bR} —3=0.

from where

s | 6 5|3
m-+2b bP.

In a private case, when m=0 and P. =1, then

5:@:\/%.

If we calculate the moment of resistance of
rotation of the plate and the coefficient of
heat transfer, the following images are
obtained:

M:—M(Qz—Ql)[6+(2m2+bﬂ,
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R
where R, = @
14

- Reynolds number.

Conclusion.

The sequential approximation method
used to solve the problem under
consideration by us allows us to define the
search functions in any approximation. Also
note that based on the obtained results, it is
easy to see how the magnetic field, rotational
angular  velocities, suction parameter,
Reynolds and Prandtls numbers and plate
radius affect the physical characteristics of
fluid flow and heat transfer.
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