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Abstract 

We examined the relationship between solar activity and the Dow Jones Industrial Average from 
1896 to 2021. We employed sliding-window correlation, cross-correlation, and wavelet 
coherence analyses. It was discovered that the correlation with 11-year periodicity is more than 
0.5 during the 1906–1936 and 1964–2000 time periods, and is visible with a 95% confidence level 
during the 1910–1930 and 1990–1994 time periods. This correlation is proved by coherence, with 
a high 95% confidence level revealed between cosmic ray data and the Dow Jones Industrial 
Average in the same periods where the correlation between sunspot numbers and cosmic ray data 
is high (1964–2000), but with a distinct phase difference. Because financial indices reflect many 
simultaneous influences, revealing a correlation between studied events is difficult. nevertheless, 
it's significant to study the intercorrelations between financial indices and solar activity or cosmic 
rays for forecasting financial models and systemic risk assessments. 
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1. Introduction 

Solar variability modulates the near‑Earth space environment through changes in 
electromagnetic emissions and energetic particle fluxes. Solar phenomena such as solar flares and 
solar coronal mass ejections can disrupt technological systems (Buzulukova et al., 2025) and 
influence human psychological state and health (Neale et al., 2023), which in turn may affect 
economic activity. There is a correlation between solar activity and various economic 
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characteristics (Gorbanev, 2012; 2020; Walsh, 1993; Krivelyova and Robotti, 2003; Peng et al., 
2019). 

The Dow Jones Industrial Average (DJIA) is one of the oldest and most popular stock 
indexes. The DJIA, while composed of 30 U.S. firms, is widely used as a proxy for market 
sentiment and global financial linkages. It can be considered not only a leading indicator of the 
US economy (Stock and Watson, 1989) but also an indicator of global business performance, due 
to its strong influence on other stock markets (Zheng and Chen, 2013). A sharp drop in the DJIA 
could indicate the onset of a large-scale crisis. Therefore, its changes are closely monitored to 
assess future economic performance expectations (Hester and Gibson, 2003; Goidel et al., 2010). 

This study we revisited the DJIA–solar relationship and cosmic rays using long historical 
records and modern correlation and cross-correlation methods and the wavelet coherence 
approach.  
 
2. Data and methods  

Monthly sunspot numbers were obtained from the SILSO World Data Center (website: 
http://www.sidc.be/silso/) for 1818-2021. Cosmic-ray neutron monitor data were taken from the 
Oulu station (Sodankylä Geophysical Observatory, Finland) for 1964–2021. Historical DJIA 
values for 1896–2021 were retrieved from public market archives (Free Historical Market Data – 
Stooq, https://stooq.com/^DJI - Dow Jones Industrial - U.S. - Stooq).  

 
2.1 Detrending  

To remove the long-term upward trend in the DJIA, we applied an 11-year moving 
average chosen to match the dominant solar periodicity. After subtracting the smoothed data 
from the original data and multiplying it by 100, we get seasonal fluctuations around the DJIA 
trend as a percentage (DJ). Fig. 1 depicts the results. 

 
Fig. 1. DJIA data decomposition a) The DJIA (blue curve) and the moving average DJIA with an 11-year 

window (red curve); b) The detrended DJIA expressed as a percentage. 
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2.2 Correlation and cross‑correlation 

Over the full 1896–2021 interval, the monthly linear correlation between sunspot 
numbers and the detrended DJ is small but statistically significant, r = 0.1492 (0.0996-0.1980), but 
we can reject the null hypothesis ("no statistical relationship and significance") with high 
reliability because P < 0.001, indicating that the correlation is almost guaranteed. To see how this 
correlation changes over time, we compared smaller time intervals (several 11-year solar cycles). 
For this, we used a sliding window method. The linear correlation R between the data and the p-
value for rejecting the null hypothesis was determined for each selected window. The window 
was then advanced by a relatively small-time step, and the same values were determined once 
more. The optimal time window length was chosen to be 22 years, with a time step size of one 
year. The results are shown in Fig. 2. 

 
Fig. 2. Correlation charts between the SN and the DJIA detrended index (DJ) (the sliding window length 

is 22 years, and the step length is one year). a) Curve of correlation coefficients. The red dots indicate 
locations where we cannot reject the null hypothesis between events. b) The level of reliability of the 

hypothesis P; c) The blue curve represents the SN, while the red curve represents the DJ. 
 

Sliding‑window correlations vary between approximately −0.5 and +0.5. Positive 
correlations are prominent in the early 20th century, reverse in the 1970s–1980s, and reappear 
toward at the end of the twentieth century and the beginning of the twenty-first century.  

Because the process is non-linear and non-stationary, with many intermediate links, it is 
difficult to explain what this change depends on. The correlation modulus reaches 0.5, a 
significant value, while the areas of unreliable correlation (bold areas on the curve in Figure 2a) 
are relatively short and mostly coincide with areas of correlation sign change.  

Cross‑correlograms computed within moving with a 22-year windows reveal a 
non‑stationary structure: the maximum cross-correlation (from -0.65 to 0.65) and peak lags shift 
between roughly −1 and +3 years. A top view of the resulting 3D image (contour plot) is depicted 
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in Fig. 3, and it clearly demonstrates that the connection between the studied data is non-
stationery and changes over time. 

 
Fig. 3. The upper panel shows an SN-DJ cross-correlogram, with the horizontal axis representing date 

and the vertical axis representing phase lag; the white dashed curve shows lag variation corresponding to 
maximum cross-correlation; and the lower panel shows activity variations for SN and DJ, with the blue 

curve representing SN and the red curve representing DJ. 
 

2.3 Wavelet coherence 
Wavelet cross-correlation and wavelet coherence methods scale‑dependent 

synchronizations have recently been widely used to identify potential relationships between two 
time series (Addison, 2017).  

In general, the value of wavelet coherence ranges from 0 to 1 and, like the correlation 
coefficient, allows us to quantify the correlation between events. 

We used software packages developed by Torrence and Compo and Grinsted to calculate 
the wavelet coherence between the monthly average SN and DJ data. The statistical significance 
level of wavelet coherence is estimated using Monte Carlo methods with red noise to calculate 
the 5% level of significance (300 calculations) (Torrence and Webster, 1999; Grinsted et al., 2004). 

In addition to wavelet coherence, the wavelet coherence phase difference is calculated, 
which indicates how far apart the study events are for a given frequency and time. The areas of 
significant coherence (with a 95% level of confidence) are denoted by the black line contours. 
The arrows represent the relative phase of two-time series; a right-pointing arrow indicates in-
phase coherence between the two signals, while a left-pointing arrow indicates anti-phase 
coherence. A phase arrow pointing down indicates that one time series is 90 degrees ahead of 
another, while one pointing up indicates that it is 90 degrees behind. When arrows are strongly 
horizontal (0 or 180 degrees), it indicates a linear relationship between the two phenomena being 
studied; non-horizontal arrows indicate an out of phase situation and a more complex non-linear 
relationship (Velasco Herrera et al., 2018). 
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Fig. 4 depicts the wavelet coherence between SN and DJ data. The above-mentioned 
arrows indicate phase differences for coherence and correlation values greater than 0.5. 

The 95% confidence level of wavelet coherence was estimated using the Monte Carlo 
method (300 calculations) and is indicated with a bold outline in Fig. 4. It shows that the 
similarities between these two events are greatest for about 11 years (approximately 128 months).  

The strongest coherence appears near the 11-year band, with coherence values reaching 
high levels to 0.8 in the 1920s and 0.72 in the 1990s, and it exceeds 0.5 during 1906–1936 and 
1964–2000. Significant 11-year synchronization is concentrated in subintervals such as 1910–
1930 and 1990–1994.  

 
Fig. 4. a) Squared wavelet coherence between the SN and DJ time series. The color bar scale shows the 

wavelet coherence power. Arrows represent the relative phase relationship. The bold black contour 
denotes the 5% significance level calculated against a red noise background using Monte Carlo methods, 
and the normal contour denotes the cone of influence (COI). b) SN versus date c) The global spectrum of 

the wavelet coherence power. 
 

Additional features (Fig. 4) include anticorrelated bands near 32 years and 50–60 years 
(with a value of 0.83); these may reflect to the long waves of Kondratieff, which are well-known 
in economics (Kondratieff, 1935; Korotayev, 2010, 2011; Galegatti, 2016; Modis, 2017). 50-60-
year periodicity is also known for solar activity (Ogurtsov et al., 2002; Lomb, 1980, 2013) and the 
paleo-cosmic-ray record provided by cosmogenic radionuclides (McCracken et al., 2013). 

These periodicities are also clearly visible in Figs. 4 and Fig. 5, though the data length of 
120 years did not allow us to assess this periodicity convincingly because it is mainly found 
outside the cone of influence in Fig. 4. (COI). This period is presumably a modulation of the 11-
year coherence between SN and DJ, but an explicit consideration is not possible due to the short 
observation time of DJ.  

As we can see, wavelet coherence (i.e., in the frequency domain) allows us to investigate 
the relationship between two events at different scales and times more flexibly and 
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straightforwardly than traditional linear correlation or even sliding linear analysis on different 
scales. 

We investigated the wavelet coherence between CR and the DJ. For 1964–2021 the 11-
year synchronization found between the SN and the DJ is also visible in the wavelet coherence 
between CR and the DJ (Fig. 5). As shown in Fig. 5, when the coherence between the SN and the 
DJ increases, around 1964-2000, there is a 95% confidence in coherence between CR and the DJ, 
but with a different phase shift. but with a consistent phase offset consistent with the known 
anticorrelation between solar activity and galactic cosmic‑ray flux (Caballero-Lopez et al., 2019; 
Bhattachaya and Roy, 2014). In several epochs the cosmic‑ray–DJ relationship appears stronger 
and more statistically convincing than the sunspot–DJ link.  

 
Fig. 5. a) Squared wavelet coherence between the CR and DJ time series. Arrows represent the relative 
phase relationship. The bold black contour denotes the 5% significance level calculated against a red 
noise background using Monte Carlo methods, and the normal contour denotes the cone of influence 

(COI). b) CR, c) The global spectrum of squared wavelet coherence. 
 
3. Results  

The relationship between solar activity and the DJIA from 1896 to 2021 is investigated. 
Using a novel approach called Wavelet coherence, it was revealed that the relationship between 
events is ambiguous and changes over time. There were detected synchronization time intervals 
with different periods, as well as changes in the coherence of these synchronizations over time. 

Solar activity and the DJ have a non-stationary relationship, with quite high correlations 
occurring at different scales and time intervals. At the beginning of the twentieth century, high 
(0.7-0.8) coherence is observed in the region of 11-year periodicity.  

The 11-year periodicity weakens and disappears in the middle of the twentieth century, a 
3-4-year correlation emerges with a phase difference of about 1 year. However, by 1957, at the 
peak of solar activity, a one-year synchronization appears with a three-month phase difference. 
By the end of the twentieth century, an 11-year correlation appears with approximately 3-4 years 
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of phase difference, as well as a 4-year periodicity antiphase and a 2-3-year periodicity with a six-
month lead. At the beginning of the 20th century, there is a 6-year correlation with almost no 
phase difference. Also found a 32-year anticorrelation and a 50-60-year anticorrelation.  

The search for correlations between solar activity, cosmic rays and DJIA is complicated 
by the simultaneous influence of numerous factors on financial indices. Economic dynamics 
emerge from intricate interactions among economic, political, social, environmental, and 
technological systems. Understanding the interconnections among these processes requires 
further investigation to uncover intermediate links and causal mechanisms. Such clarification is 
essential for improving DJIA forecasts and should be incorporated into the development of robust 
financial modeling approaches. 
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ანოტაცია 

შესწავლილი იქნა კავშირი მზის აქტივობასა და დოუ ჯონსის ინდუსტრიულ საშუალო 
ინდექსს შორის 1896 წლიდან 2021 წლამდე. გამოყენებული იქნა კორელაციისა და კროს-
კორელაციის მეთოდები მცოცავი დროითი ფანჯრით და ვეივლეტ კოჰერენტულობის 
ანალიზი. აღმოჩენილია, რომ 11-წლიანი პერიოდულობით კორელაცია 0.5-ზე მეტია 
1906–1936 და 1964–2000 წლებში და 95%-იანი სანდოობის დონით მოჩანს 1910–1930 და 
1990–1994 წლებში. იმავე პერიოდებში მაღალი, 95%-იანი სანდოობით იქნა 
გამოვლენილი 11 წლიანი სინქრონიზაცია კოსმოსური სხივების მონაცემებსა და დოუ 
ჯონსის ინდუსტრიულ საშუალო ინდექსს შორის, ხოლო მზის ლაქების რაოდენობასა და 
კოსმოსური სხივების მონაცემებს შორის 1964–2000 წწ. კორელაცია მაღალია ფაზური 
სხვაობით. შესწავლილ მოვლენებს შორის კორელაციის გამოვლენა რთულია, ვინაიდან 
ფინანსურ ინდექსებზე ერთდროულად მრავალი ფაქტორი ახდენს გავლენას. 
მიუხედავად ამისა, მნიშვნელოვანია ფინანსურ ინდექსებსა და მზის აქტივობას ან 
კოსმოსურ სხივებს შორის კორელაციების შესწავლა ფინანსური საპროგნოზო 
მოდელებისა და სისტემური რისკების შესაფასებლად. 
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