

პერიოდის კონტროლის მიზნით საპარო სივრცეში რადიოლოკაციურად მნელად აღმოსაჩენი ობიექტების დაფიქსირება მოდულირებული ლაზერული გამოსხივებით

შალვა კაკაბაძე, თენგიზ ხაჩიძე, გურამ ჩაგანავა, ინგა კაპანაძე, ნიკოლოზ ხაჩიძე
სსიპ ინსტიტუტი „ოპტიკა“

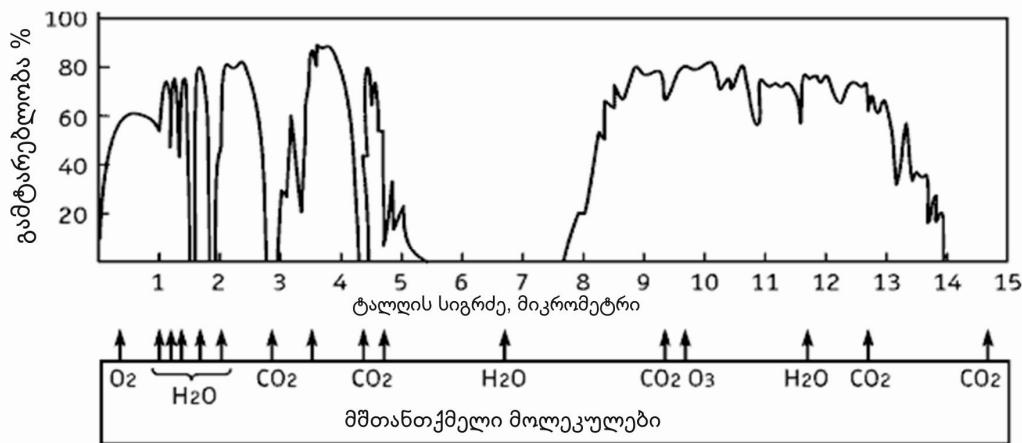
ამსტრაქტი

ნაშრომში მოყვანილია კვლევები, რომლებიც განკუთვნილია საპარო სივრცეში რადიოლოკაციურად მნელად აღმოსაჩენი ობიექტების დეტექტორული მოწყობილობის შესაქმნელად. მოწყობილობის მოქმედების პრინციპი დაფუძნებულია მოდულირებული ლაზერული გამოსხივების გამოყენებაზე. კერძოდ, კვლევებისას გამოყენებული იქნა 10 ვტ სიმძლავრის ლაზერი, 980(+/-5)ნმ ტალღის სიგრძით. კვლევები ძირითადად დაეთმო იმას, თუ რამდენადაა დამოკიდებული ლაზერის მოდულაციაში მიღებული სიგნალის ხარისხი განივი იმპულსური მართვის სიგნალის იმპულსის შევსებადობაზე. ექსპერიმენტი ჩატარდა მოდულატორის განივი იმპულებისათვის შევსებადობით 90% დან 10%-დე. ოსცილოსკოპით ხდებოდა, როგორც მოდულირებული სიგნალის გადაღება ასევე ობიექტიდან არეკვლილი სიგალის დაფიქსირებაც.

კვლევებმა აჩვენა, რომ შევსებადობის შემცირებით ობიექტიდან არეკვლილი სიგნალის ხარისხი არ ფუჭდება და ის საკმაოდ კარგია 10%-იანი შევსებადობის შემთხვევაშიც. ეს ფაქტი ასევე დადასტურდა ობიექტიდან არეკვლილი სიგნალის ყურსასმენით დაფიქსირებისას. ამას მივყავართ იმ დასკვნამდე, რომ მოდულაციაში განივი იმპულსური მართვის სიგნალის გამოყენებით იმპულსის შევსებადობის 10-15%-მდე შემცირება, ლაზერის ქარხნულად დასაშვები სიმძლავრის 2-3-ჯერ გაზრდის შესაძლებლობას მოგვცემს და შესაძლებელი იქნება საკმაოდ დიდი მანძილებიდან (ასეულობით მეტრი) სიგნალის მიღება და შესაბამისად ობიექტების დატექტირება.

საკვანძო სიტყვები: ლაზერი, მოდულაცია, სიგნალი.

დღეს დიდი მნიშვნელობა ენიჭება საპარო სივრცის პერიოდის კონტროლს. გარკვეულ შემთხვევებში რადიოლოკაციური სისტემები საპარო სივრცეში წარმატებით ახდენენ მფრინავი ობიექტების აღმოჩენასა და მათი მდებარეობის

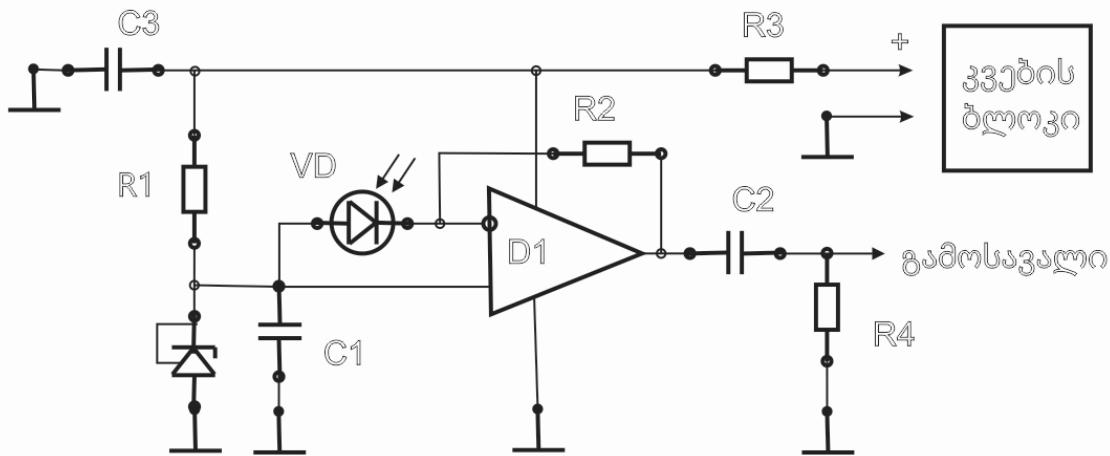

დადგენას. თუმცა, ბოლო ხანებში ხშირად გამოიყენება მცირე ზომის, არამეტალური ზედაპირის მქონე მფრინავი ობიექტები, როგორც სადაზვერზო, ისე საბრძოლო დანიშნულებით. აღნიშნული ობიექტების დაფიქსირება რადარული სისტემებისთვის ხშირ შემთხვევაში შეუძლებელია მათი ზომებისა და შემადგენელი მასალების ელექტრომაგნიტური თვისებებიდან გამომდინარე. მსგავსი მფრინავი ობიექტები ფაქტობრივად გამჭვირვალეა რადიოსიხშირულ დიაპაზონში. აქედან გამომდინარე, აქტუალურია საპარო სივრცის პერიმეტრის კონტროლის ისეთი მეთოდის გამოყენება, რომელიც წარმატებით მოახდენს რადიოლოკაციურად ძნელად აღმოსაჩენი ობიექტების დაფიქსირებასა და ლოკალიზებას.

ზემოაღნიშნული ობიექტების აღმოჩენის ერთ-ერთი გზა შეიძლება იყოს მოდულირებული ლაზერული გამოსხივების გამოყენება. მფრინავი ობიექტის ზედაპირიდან მოდულირებული ლაზერული სხივის არევლის შედეგად სისტემა დააფიქსირებს საპარო სივრცეში ობიექტის არსებობას. რადიოსიხშირული დიაპაზონისაგან განსხვავებით ხილულ სპექტრში მცირე ზომის ობიექტი გამჭვირვალე არ არის. ამასთან ერთად, სინათლის სხივის არევლა ხდება როგორც მეტალური, ისე არამეტალური ზედაპირებიდან. აქედან გამომდინარე, ამ პრინციპზე დაფუძნებული მოწყობილობა შეძლებს მცირე ზომის, არამეტალური ობიექტების აღმოჩენას.

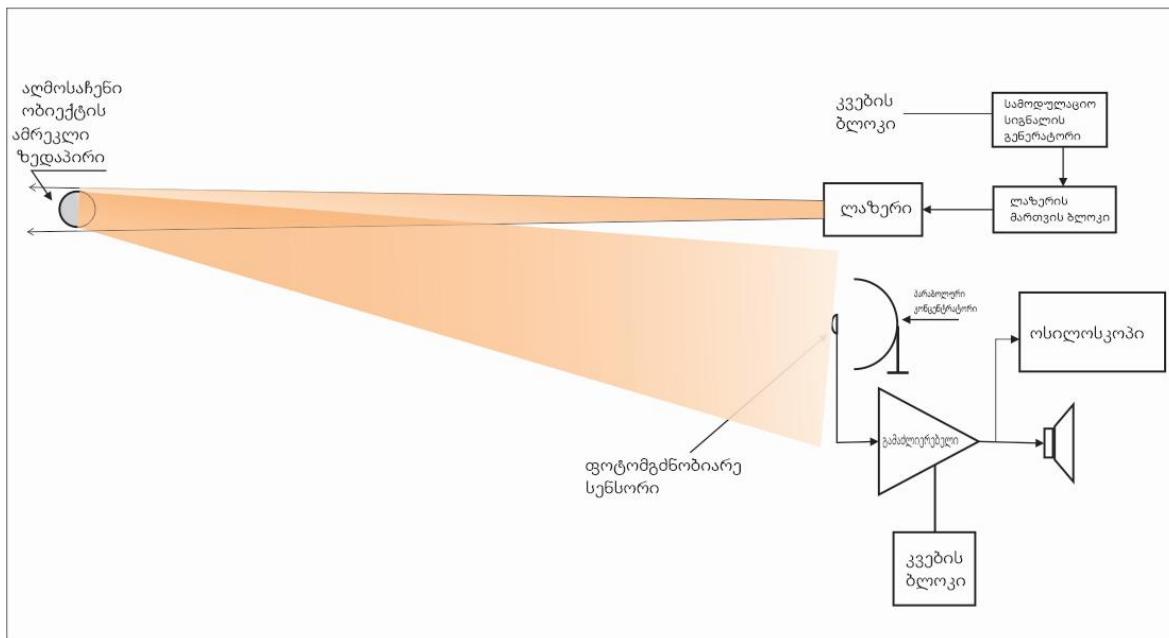
წარმოდგენილი კვლევის არსი ზემოაღნიშნული პრინციპით მომუშავე აღმომჩენი მოწყობილობის შექმნაში და გამოცდაში მდგომარეობს.

როგორც უკვე აღვნიშნეთ მოწყობილობა დაფუძნებული იქნება ლაზერულ (ოპტიკურ) გამოსხივებაზე. ოპტიკური გამოსხივების ტალღებისთვის კი დამხასიათებელია არა მარტო ტალღური მოვლენები: დიფრაქცია - ინეტრფერენცია, არამედ კვანტური ან კორპუსკულარული მოვლენები. გვაქვს სიგნალის ფლუქტუაცია იმის გამო, რომ ჰერში არის ტურბულენტური მოვლენები, მათზე ხდება ოპტიკური გამოსხივების რეფრაქცია და ასევე არაერთგვაროვნებები რომლებზეც ხდება გაბნევა და შთანთქმა. ამის გარდა ატომსფეროში გამოსხივების შთანთქმა დამოკიდებულია გამოსხივების ტალღის სიგრძეზე და ახასიათებს ამ გამჭვირვალობის ფანჯრის მახსიათებელს.

ხელსაწყოს მუშაობის პრინციპიდან გამომდინარე ობიექტზე არევლილი სიგნალის მისაღებად სასურველია აღმოსაჩენი ობიექტის მიმართულებიდან შემოსული მუშა სპექტრის დიაპაზონში არსებული გარეშე სხივები მინიმალური ამპლიტუდისა იყოს. ამ პრობლების გადასაწყვეტად შესაბამისი წყაროების დამუშავებით შესწავლილი იქნა ატმოსფეროს სპექტრალური გამტარებლობის დიაპაზონი (ნახ. 1) [1], ამ დიაპაზონის მიხედვით (0.8-დან - 1.675 მკმ-მდე) უნდა შეირჩეს ხელსაწყოში გამოყენებული ლაზერის ტალღის სიგრძე.


სინათლის შთანთქმა ატმოსფეროში დამოკიდებულია მასში წყლის ორთქლისა და ნახშირორჟანგის შემადგენლობაზე, რომელთა კონცენტრაციაც თავის მხრივ დამოკიდებულია ჰაერის ტენიანობაზე და მის სიმაღლეზე. არაწრფივი ოპტიკური ეფექტები გავრცელების არეალში განიხილება როგორც რეზულტატი ურთიერთქმედებისა ოპტიკური გამოსხივებისა მრავალ ატომთან და მოლეკულასთან, ამ ურთიერთქმედებებს შეუძლიათ ოპტიკური სიგნალის როგორც შთანთქმა და გაბნევა ასევე გაძლიერება. ჩვენ შემთხვევაში არეკლილი სიგნალის ინტენსივობა დამოკიდებულია ობიექტის ზომაზე, ლაზერის სხივის გაშლის კუთხეზე სიმძლავრეზე და სპექტრზე.

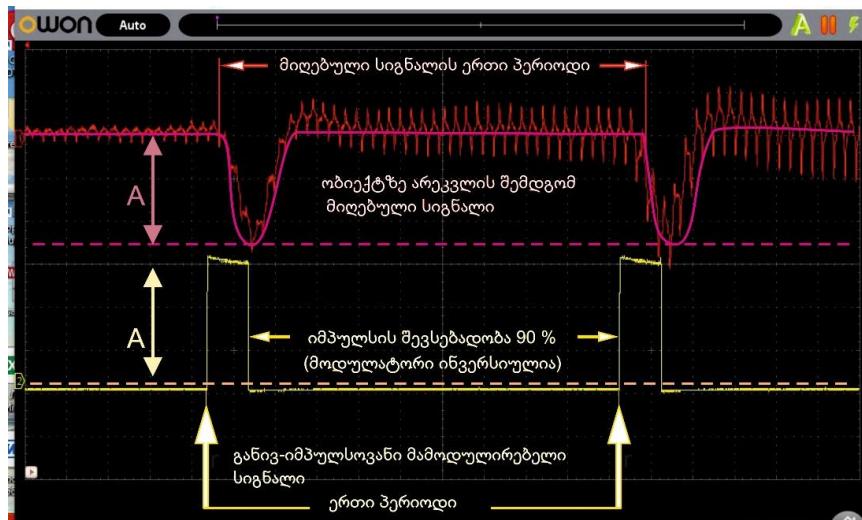
ზემოთ აღნიშნულის გათვალისწინებით შემუშავდა ხელსაწყოს პრინციპიალური სქემა (ნახ. 2) და აიწყო საცდელი ლაბორატორიული მაკეტი(ნახ. 3), ხელსაწყო ორი ნაწილისგან შედგება: მოდულირებული ლაზერული სიგნალის გამომსხივებელისაგან და ობიექტიდან არეკლილი სიგნალის მიმღებისაგან.


მოდულირებული ლაზერული სიგნალის გამომსხივებელი მოიცავს: კვების ბლოკს, დასამოდულირებელი სიგნალის გენერატორს, ლაზერის მოდულატორს, გამასხივებელ ლაზერს. ობიექტიდან არეკლილი სიგნალის მიმღები ბლოკი შეიცავს: ობიექტისგან არეკლილი სიგნალის მაფოვუსირებელ კონცენტრატორს, შესაბამისი სპექტრის მიმართ მგრძნობიარე ფოტომიღებს, მიღებული სიგნალის ელექტრულ გამაძლიერებელს, მიღებული სიგნალის გამოყოფ ფილტრს, შესაბამის დაბალი სიხშირის გამაძლიერებელს, ბგერით სიგნალში გადამყვან ხმამაღლა მოლაპარაკეს.

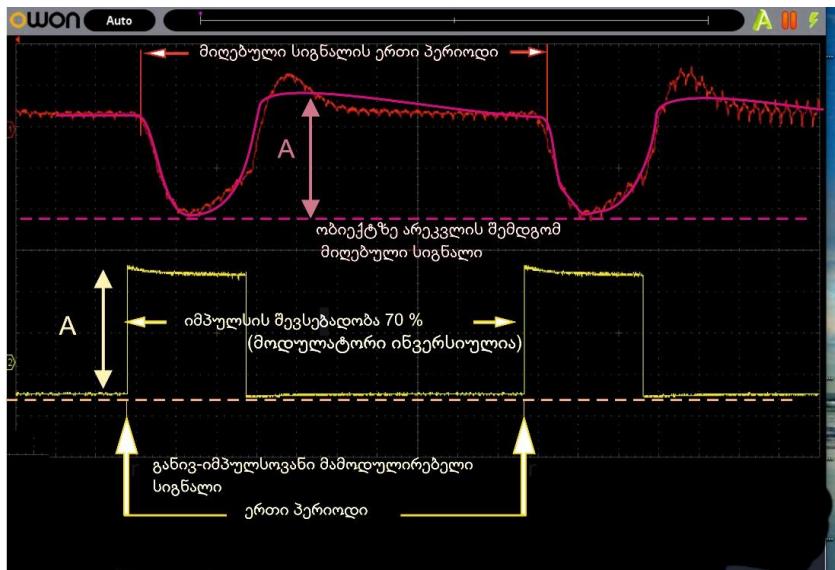
გამომსხივებლად გამოყენებული იქნა ჩვენს ხელთ არსებული 10 ვტ სიმძლავრის ლაზერი (უმჯობესია მეტი სიმძლავრის მქონე ლაზერის გამოყენება), 980(+/-5)ნმ ტალღის სიგრძით. აეწყო მაკეტი, რომელიც ფუნქციონალურად მოქმედი გამოდგა, რითაც დასაბუთდა იდეის საფუძვლად არსებული მოსაზრებების მართებულობა. გამოცდებისას მაკეტის მეშვეობით შევძელით მცირე ზომის (10სმx10სმ) როგორც მეტალის ასევე სხვადასხვა პოლიმერული მასალების ობიექტის დაფიქსირება.

მაკეტის მიმღებში სენსორად გამოყენებული იქნა ჩვენს ხელთ არსებული ფოტომგრძნობიარე დიოდი $\Phi\Delta-24K$. მიმღების მგრძნობიარობის გასაზრდელად დამზადდა მიღებული ოპტიკური ანარევლის პარაბოლური კონცენტრატორი, რომლის ფოკუსშიც მოვათავსეთ ფოტოსენსორი. ჩვენს მიერ შეირჩა სიგნალის გამაძლიერებლის ელექტრული სქემა და აეწყო ფოტომიმღებიდან მიღებული ელექტრული სიგნალის გამაძლიერებელი.

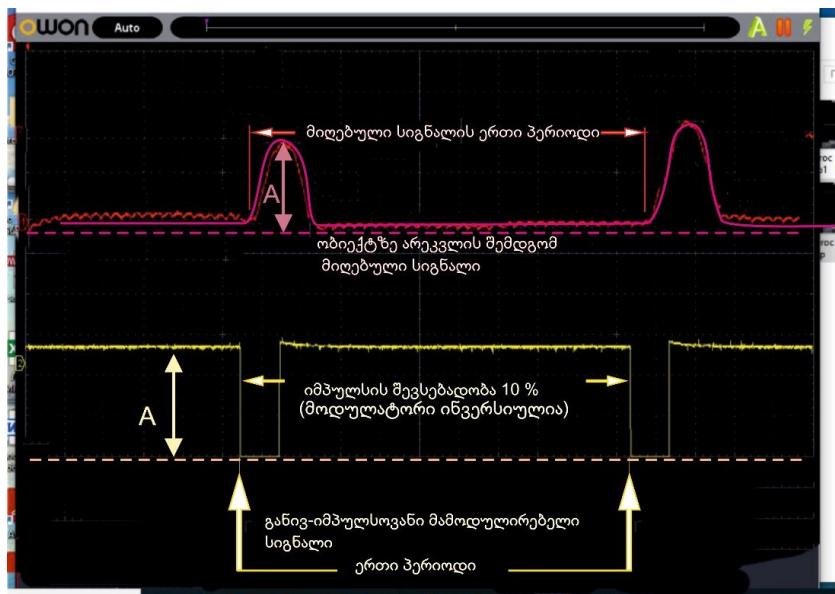
ნახ. 2



ნახ. 3


შექმნილი მაკეტის გამოყენებით (ნახ. 3) ჩატარდა რამოდენიმე ექსპერიმენტი, გაიზომა მაკეტის გარკვეული პარამეტრები. ექსპერიმენტის დროს აღმოსაჩენი ობიექტი იყო 10სმx10სმ სხვასხვა პოლიმერული, დიელექტრიკული მასალა, ეს მასალები დიდი ზომების შემთვევაშიც კი რადიო სიხშირეზე მომუშავე რადარული სისტემებითვის გამჭვირვალეა და არ არის აღმოჩენადი. ექსპერიმენტალურად

დადგინდა ლაზერის გაშლის კუთხე (რომელიც 3° შეადგენს), ოსცილოსკოპის გამოყენებით პირველ რიგში შესწავლილი იქნა ობიექტიდან არეკლილი სიგნალის ამპლიტუდის დამოკიდებულება მანძილზე. შესწავლილი იქნა არეკლილი სიგანლის ინტენსივობის დამოკიდებულება მანძილზე. გაზომვები ჩატარდა 1მეტრიდან 35 მეტრამდე მანძილზე (ლაბორატორიულ პირობებში უფრო დიდ მანძილებზე შემოწმება შეუძლებელი იყო). 1 დან 10 მეტრამდე მანძილებზე სიგნალის ამპლიტუდის ცვლილება პრაქტიკულად არ ფიქსირდებოდა, მანძილის შემდგომი ზრდით შეინიშნებოდა მცირე შემცირება (35 მეტრი დაშორებისას არ აღმატებოდა 8%-ს). უფრო მძლავრი ლაზერის გამოყენებისას სიგნალის შემცირება სავარაუდოდ უფრო ნაკლები იქნებოდა.


შემდგომი კვლევები ჩატარდა იმის გამოსაკვლევად, თუ რამდენადაა დამოკიდებული ლაზერის მოდულაციაში განივი იმპულსური მართვის სიგნალის იმპულსის შევსებადობაზე მიღებული სიგნალის ხარისხი. ექსპერიმენტი ჩატარდა მოდულატორის განივი იმპულებისათვის შევსებადობით 90% დან 10%-დე. ოსცილოსკოპით ხდებოდა, როგორც მოდულირებული სიგნალის გადაღება ასევე ობიექტიდან არეკვლილი სიგანლის დაფიქსირებაც (ფოტო-1, ფოტო-2, ფოტო-3).

ფოტო-1

ფოტო-2

ფოტო-3

ექსპერიმენტის დროს მოდულირებული სიგნალის შევსებადობის შემცირება ხდებოდა 10%-იანი ბიჯით. ფოტო-1, ფოტო-2 და ფოტო-3-ზე მოყვანილია შედეგები 90%-იანი, 70%-იანი და 10%-იანი შევსებადობით. ოსცილოგრამებზე ჩანს, რომ შევსებადობის შემცირებით ობიექტიდან არეკვლილი სიგნალის ხარისხი არ ფუჭდება და ის საკმაოდ კარგია 10%-იანი შევსებადობის შემთხვევაშიც. ეს ფაქტი ასევე დადასტურდა ობიექტიდან არეკვლილი სიგნალის ყურსასმენით დაფიქსირებისას. ამას მივყავართ იმ დასკვნამდე, რომ მოდულაციაში განივი იმპულსური მართვის სიგნალის გამოყენებით იმპულსის შევსებადობის 10-15%-მდე შემცირება, ლაზერის ქარხნულად დასაშვები სიმძლავრის 2-3-ჯერ გაზრდის შესაძლებლობას მოგვცემს და შესაძლებელი იქნება საკმაოდ დიდი მანძილებიდან (ასეულობით მეტრი) სიგნალის მიღება.

საბოლოოდ შეიძლება დავასკვნათ, რომ აღნიშნული მეთოდის ბაზაზე შესაძლებელი შეიქმნას ხელსაწყო, რომელიც მცირე ზომის, არამეტალური ზედაპირის მქონე მფრინავი ობიექტების დაფიქსირებას შეძლებს.

გამოყენებული ლიტერატურა

1. Е. В. Медведев, Д. С. Бурый, С. А. Гулин, В. Г. Стадинь, Р. В. Чумарин . Светоэнергетический расчет оптико-электронной аппаратуры дистанционного зондирования Земли видимого диапазона. Вестник Военного инновационного технополиса «ЭРА», 2023, Т. 4, № 1, стр. 72-77.
2. Жуков Г.В. ВЛИЯНИЕ ПОГЛОЩЕНИЯ СВЕТА В ЗЕМНОЙ АТМОСФЕРЕ НА ФОТОМЕТРИЧЕСКИЕ НАБЛЮДЕНИЯ ЗВЕЗД. Учебно-методическое пособие. Казань, 2010, - 17с.

Acquisition of hard-to-detect objects in airspace, utilizing modulated laser radiation for perimeter control.

Shalva Kakabadze, Tengiz Khachidze, Guram Chaganava, Inga Kapanadze, Nikoloz Khachidze

LEPL Institute "Optica"

Abstract

The paper presents studies designed to create a detector device for objects that are difficult to detect in airspace by radar. The principle of operation of the device is based on the use of modulated laser radiation. In particular, a 10 W laser with a wavelength of 980 (+/-5) nm was used in the studies. The studies were mainly devoted to the extent to which the quality of the received signal depends on the pulse filling capacity of the transverse pulse control signal in laser modulation. The experiment was conducted for transverse pulses of the modulator with a filling capacity of 90% to 10%. Both the modulated signal and the signal reflected from the object were recorded with an oscilloscope.

The studies showed that the quality of the signal reflected from the object does not deteriorate with a decrease in filling capacity and it is quite good even in the case of a filling capacity of 10%. This fact was also confirmed when recording the signal reflected from the object with a headset. This leads to the conclusion that reducing the pulse fill factor to 10-15% by using a transverse pulse control signal in the modulation will allow us to increase the factory-allowed power of the laser by 2-3 times, and it will be possible to receive signals from quite large distances (hundreds of meters) and, accordingly, detect objects.

Keywords: laser, modulation, signal.