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Abstract 
The classification of complex signals, often characterized by high noise levels, non-linearity, and 
overlapping patterns, poses significant challenges in signal processing. Traditional methods frequently 
fail to address the intricate structures inherent in such signals, necessitating the adoption of advanced 
analytical techniques. This study explores the application of fractal methodologies, leveraging their 
self-similar and scale-invariant properties, for classifying complex signals. By employing tools such as 
the Hurst exponent and the (R/R) method, this work demonstrates how fractal analysis can effectively 
characterize and categorize stationary and non-stationary signals based on their probabilistic 
distributions and fractal dimensions. Results indicate that fractal methods provide robust descriptors 
for distinguishing signal types, enabling enhanced accuracy and operational efficiency. The proposed 
approach holds promise for developing virtual analyzers with expansive dynamic ranges, applicable in 
diverse fields such as diagnostics, control systems, and signal processing. 
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Introduction 
The classification of hard signals is a critical challenge in signal processing, where the goal is to analyze 
and interpret complex, non-trivial datasets generated by various sources. Hard signals often exhibit 
characteristics such as high noise levels, overlapping patterns, non-linearity, and high dimensionality, 
making traditional classification approaches less effective. These signals can arise in diverse domains, 
including biomedical applications (e.g., EEG or ECG signals), industrial monitoring, 
telecommunications, and environmental systems [1]. 
The complexity of these signals necessitates advanced analytical techniques that can handle intricate 
patterns and extract meaningful features. Recent advancements in machine learning, particularly deep 
learning and ensemble methods, have demonstrated significant potential in addressing these 
challenges. These approaches leverage powerful computational models to capture subtle patterns and 
relationships within the data, enabling improved classification accuracy and robustness. 
Fractal methods offer a promising solution for addressing these challenges by leveraging the self-similar 
and scale-invariant properties inherent in many complex signals. These methods utilize fractal 
geometry to analyze signal structures across multiple scales, revealing insights into their underlying 
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dynamics that are often inaccessible through conventional techniques. Key tools in this domain include 
fractal dimension analysis, multifractal spectra, and wavelet-based fractal approaches, which provide 
robust descriptors for distinguishing between signal types and classes. 
The advantages of fractal methods lie in their ability to handle irregularities and noise effectively while 
preserving the intrinsic characteristics of the signal. By focusing on the geometric and topological 
aspects of signals, these methods enhance classification accuracy and robustness, even in highly 
complex and noisy environments. This paper explores the application of fractal methodologies to signal 
classification, highlighting their theoretical foundations, practical implementations, and comparative 
advantages over traditional approaches. 

Signal Categories and Spectra 

Signals can be categorized into stationary and non-stationary types, each with distinct spectral 
characteristics. Understanding these categories is crucial for accurate frequency analysis. Stationary 
signals have statistical parameters that remain constant over time, such as the overall signal level, 
amplitude distribution, and standard deviation. These are further classified into: 
Deterministic Signals: 
   - Maintain relatively constant frequency and amplitude components over time. 
   - Subdivided into periodic signals (repeating at equal intervals) and quasi-periodic signals. 
   - Periodic signals exhibit discrete frequency components, known as harmonics. 
Random Signals: 
   - Unpredictable in frequency and amplitude but exhibit constant statistical characteristics. 
Non-stationary signals, on the other hand, can be divided into transient and continuous signals. 
Transient signals begin and end at zero levels and exist for finite durations, varying from very short to 
relatively long periods [1]. 

Literature Review 

Fractal analysis has emerged as a powerful tool for understanding and characterizing complex signals. 
Leveraging the self-similar and scale-invariant properties of fractal structures, researchers have 
successfully deciphered intricate patterns and dynamics inherent in various signal types. This narrative 
review synthesizes recent contributions to the field, outlining the theoretical foundations, 
methodological advancements, and practical applications of fractal analysis in signal classification. 
The exploration of fractal methodologies begins with Falconer (2013), who provides a foundational 
understanding of fractal geometry. This seminal work emphasizes the relevance of fractal principles in 
analyzing irregular and fragmented structures across multiple scales. By establishing the theoretical 
basis for fractal techniques, Falconer’s insights form the cornerstone for subsequent applications in 
signal processing. 
Building on this theoretical framework, Eke et al. (2002) demonstrate the practical utility of fractal 
measurements in physiological signal analysis. Their study illustrates how fractal dimensions can 
quantify complexity and distinguish between different physiological states, highlighting the potential 
of fractal methods in biomedical contexts such as heart rate variability and EEG analysis. 
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Expanding the scope of fractal applications, Otkhozoria et al. (2023) investigate the fractal properties 
of network topologies and stochastic processes using the LabVIEW platform. Their work underscores 
the versatility of fractal techniques in modeling and analyzing real-world stochastic dynamics, 
providing a robust framework for understanding structural complexities in networked systems. 
Further advancing the field, Otkhozoria, Otkhozoria, and Narchemashvili (2021) introduce innovative 
methods for quantifying fractal dimensions with a focus on the classification and diagnosis of dynamic 
systems. Their study emphasizes the metrological performance of fractal methods, showcasing their 
relevance for precision measurement and signal classification. 
In addition to classification tasks, Abelashvili et al. (2024) explore the use of fractal structure analysis 
for diagnosing the stability of large-scale processes. By analyzing time series data, their approach 
facilitates real-time monitoring and diagnostics, demonstrating the applicability of fractal analysis in 
stability assessments and control systems. 
Collectively, these studies highlight the robustness and adaptability of fractal methodologies across 
diverse domains. From biomedical signal analysis to network modeling and process stability 
diagnostics, fractal techniques provide a comprehensive framework for addressing the complexities of 
signal classification. This body of literature establishes a strong foundation for future advancements in 
the integration of fractal analysis with computational tools and machine learning approaches. 
 
Theoretical Foundations of the (R/S) Method 

Before applying fractal methods to classify complex signals, we examine the indicator Hurst introduced 
for time series evaluation—the range of accumulated deviation (“R”) to the standard deviation from 
the mean (“S”). The dependence of the (R/S) parameter on observation time, represented on a double 
logarithmic scale, forms the fractal function of the studied process. The linear approximation of this 
function determines the angular coefficient, H, or the Hurst exponent. This exponent helps calculate 
the fractal dimension[3]: 

                                                𝐷 = 2 − 𝐻                                           
 
 

The fractal dimension characterizes the chaotic properties and complexity of a process. Processes with 
a Hurst exponent in the range: 
 
- 0 < H < 0.5: Antipersistent processes, indicating high noise levels and frequent trend changes. 
- 0.5 < H < 1: Persistent processes, reflecting trend preservation and relatively low noise levels. 
- H = 0.5: Processes with no discernible trend, influenced by unpredictable noise (Fig.1). 
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Fig.1. Examples of antipersistent (B) fractal lines 
 

Measurement of Stationary Random Signals Using the (R/R) Method 

The (R/R) method extends the (R/S) analysis by examining the relationship between squared deviations 
and mean deviations. Unlike the Hurst method, this technique separates random stationary signals 
based on their probability distributions, creating a practical scale for signal measurement and 
classification[2] [4]. 
Using software-generated random numbers, sets of stationary signals were analyzed. For each set, the 
fractal (R/R) function was calculated, and model parameters (A, B, and C) were estimated and averaged. 
Results indicated that the fractal (R/R) functions exhibit linear behavior within the considered sample 
size range (e.g., N=400), allowing the slope parameter (B) to serve as an identification metric [5]. 

Results and Discussion 

Table 1 summarizes the metrological characteristics of the fractal identification scale (FIS) based on the 
(R/R) method. Key evaluation metrics include the average maximum (R/R) values, slope (B), and error 
estimates. 
Table 1 metrological characteristics of the fractal identification scale  

Distribution 
type 

max 
(R/R) 

B 
Absolute 

Error 

Relative 
Error 
(%) 

2MOD 153,03 0,385 0.002 0.52 
ARCS 76 959 0,194 0.002 1.03 
EVEN 50 971 0,128 0.0005 0.39 
SIMP 27588 0,07 0.0009 1.298 
RELE 21 013 0,05 0.001 1.89 
GAUS 17845 0,048 0.0008 1.78 
COSH 10956 0,003 0.0001 1.99 

GAUS 
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The random error (approximately 25%) exceeds the systematic error (1.6%), enabling the rounding of 
max(R/R) values for practical use. For varying sample sizes, the slope parameter (B) provides a more 
consistent classification scale. 
Conclusion 
The discussed fractal classification methodology effectively categorizes complex signals based on their 
probabilistic and fractal properties. By integrating Hurst and (R/R) methods, the technology enables 
the development of virtual analyzers with broad dynamic ranges for signal shape measurement. These 
advancements hold potential for applications in signal processing, diagnostics, and control systems. 
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კომპლექსური სიგნალების ფრაქტალური კლასიფიკაციის მეთოდი 
ოთხოზორია ვანო, ნარჩემაშვილი მედეა, მენაბდე თამარ 

საქართველო ტექნიკური უნივერსიტეტი 
 

რთული სიგნალების კლასიფიკაცია, რომელიც ხშირად ხასიათდება ხმაურის მაღალი დონით, 
არაწრფივობითა და გადაფარვით, მნიშვნელოვან გამოწვევებს უქმნის სიგნალის დამუშავებას. 
ტრადიციული მეთოდები ხშირად ვერ აანალიზებენ ასეთი სიგნალების თანდაყოლილ რთულ 
სტრუქტურებს, რაც მოითხოვს მოწინავე ანალიტიკური ტექნიკის გამოყენებას. სტატია 
იკვლევს ფრაქტალური მეთოდოლოგიების გამოყენებას რთული სიგნალების 
კლასიფიკაციისთვის ისეთი ინსტრუმენტებით, როგორიცაა ჰურსტის მაჩვენებლები და (R/R) 
მეთოდი, სტატიიდან ჩანს, თუ როგორ შეუძლია ფრაქტალურ ანალიზს ეფექტურად 
დაახასიათოს და დაახარისხოს სტაციონარული და არასტაციონარული სიგნალები მათი 
ალბათური განაწილებისა და ფრაქტალის განზომილებების საფუძველზე. მიღებული 
შედეგები სიგნალების კლასიფიკაციის გაუმჯობესებული სიზუსტის და ეფექტურობის 
საშუალებას იძლევა. შემოთავაზებული მიდგომა საინტერესოა ვირტუალური 
ანალიზატორების განვითარებისთვის გაფართოებული დინამიური დიაპაზონებით, 
რომლებიც გამოიყენება სხვადასხვა სფეროებში, როგორიცაა დიაგნოსტიკა, კონტროლის 
სისტემები და სიგნალის დამუშავება. 
საკვანძო სიტყვები: სიგნალის დამუშავება, ფრაქტალური განზომილება, ჰურსტის 
ექსპონენტი, (R/R) მეთოდი 
 


