

საქართველოს სსრ მეცნიერებათა აკადემიის მოამბე, 123, №1, 1986 СООВШЕНИЯ АКАДЕМИИ НАУК ГРУЗИНСКОИ ССР, 123, №1, 1986 BULLETIN of the ACADEMY of SCIENCES of the GEORGIAN SSR, 123, №1, 1986

ҮДК 622.412:536.244

РАЗРАБОТКА МЕСТОРОЖДЕНИЯ И ОБОГАЩЕНИЕ

Ш. И. ОНИАНИ, О. А. ЛАНЧАВА К ВОПРОСУ ТЕРМОВЛАГОПЕРЕНОСА В ГОРНОМ МАССИВЕ

(Представлено академиком А. А. Дзидзигури 7.6.1984)

В неизотермических условиях влагопереноса в горном массиве возникает дополнительный поток массы, который обусловлен наличием температурного градиента. Интенсивность термовлагопереноса характеризуется термоградиентным коэффициентом, который определяется при отсутствии потока массы. Во многих работах, посвященных сушке капиллярно-пористых материалов, плотность потока массы выражается через суммы двух потоков, вызванных градиентами влагосодержания и температуры:

$$j_m = -\lambda_m (\nabla U + \delta \nabla T), \tag{1}$$

Где j_m —плотность потока массы; λ_m —коэффициент влагопроводности; ∇ —оператор Лапласса; U—влагосодержание капиллярно-пористого тела; δ — термоградиентный коэффициент, отнесенный к разности влагосодержания; T—абсолютная температура.

Массоперенос внутри капиллярно-пористого тела является весьма сложным процессом, о чем свидетельствует то обстоятельство, что потенциал массопереноса до настоящего времени не имеет достаточного обоснования. В большинстве случаев интерпретации и анализа данных по переносу вещества пользуются термодинамической аналогией массообмена с теплообменом, поскольку потенциал переноса теплоты (температура) имеет строгое обоснование и существует богатый опыт в области исследования процесса переноса теплоты. Основываясь на указанной аналогии, А. В. Лыков доказал [1], что влагосодержание является аналогом энтальпии в тепловых процессах и не может служить потенциалом массопереноса. При этом А. В. Лыков свои соображения аргументировал фактами: два капиллярно-пористых тела с разными влагосодержаниями при соприкосновении остаются в равновесии, т. е. не наблюдается перераспределение влаги между этими телами. Отсюда вывод, что у этих тел одинаковое значение потенциала влагопереноса и -тело с большим влагосодержанием характеризуется высоким значением коэффициента изотермической массоемкости. Более того, тело с меньшим влагосодержанием (например, песок) может передать влагу телу с большим значением влагосодержания (например, торфу).

Таким образом, наличие градиента влагосодержания между двумя соприкасающимися телами отнюдь не говорит о существовании потока массы между ними. Следовательно, уравнение (1) не отражает сущность процесса и такое определение плотности потока массы является ошибочным.

Плотность потока массы достоверно определяется согласно выражению

$$j_m = -\lambda_m (\nabla \theta + \delta_\theta \nabla T), \qquad (2)$$

где θ —потенциал массопереноса в капиллярно-пористых телах; δ_{θ} — термоградиентный коэффициент, отнесенный к разности потенциалов массопереноса.

При j_m =0 из выражения (2) следует

$$\delta_{\theta} = \left(\frac{\nabla \theta}{\nabla T}\right)_{j_m = 0} \simeq \left(\frac{\Delta \theta}{\Delta T}\right)_{j_m = 0}$$
 (3)

В лабораторных условиях на измельченных образцах исследован процесс сорбции водяного пара горными породами и построены кривые зависимости $\theta = f(T)_{j_m=0}$ [2]. Значения термоградиентного коэффициента δ_{θ} для разных θ определены путем графического дифференцирования этих кривых и приведены на рис. 1.

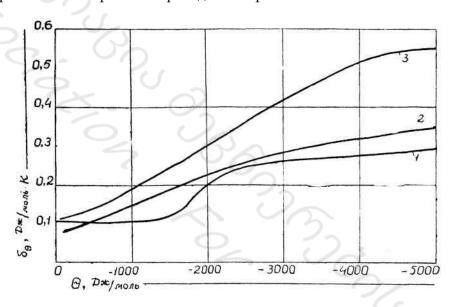


Рис. 1. Зависимость $\delta_{\theta}=f(\theta)$ при температуре 293 К для горных пород: 1—глинистый алевролит (γ_0 = 2800 кг/м³); 2 — известковый песчаник (2700 кг/м³); 3 — сидеритизированный алевролит (2680 кг/м³)

Несмотря на то что влагосодержание не является потенциалом массопереноса, все же в практических расчетах сушки строительных материалов оно еще нередко применяется в качестве потенциала. Поэтому имеет смысл более точное определение термоградиентного коэффициента 5, отнесенного к разности влагосодержаний.

Как известно, в гигроскопической области массопереноса потенциал массопереноса

$$\theta = RT \ln \varphi, \tag{4}$$

где R—универсальная газовая постоянная; φ —равновесная относительная влажность воздуха, которой соответствует определенное влагосодержание капиллярно-пористого тела. Таким образом, $\Theta = f(T, U)$.

С учетом изложенного и понятия о полном дифференциале формула (2) принимает следующий вид:

$$j_{m} = -\lambda_{m} \left[\left(\frac{\partial \theta}{\partial U} \right)_{T} \nabla U + \left(\frac{\partial \theta}{\partial T} \right)_{U} \nabla T + \delta_{\theta} \nabla T \right] \quad (5)$$

Известно, что

$$c_m = \left(\frac{\partial \theta}{\partial U}\right)_T$$
, $\alpha_m = \frac{\lambda_m}{\gamma_0 c_m}$ (6)

где c_m —коэффициент изотермической массоемкости; α_m —коэффициент потенциалопроводности массопереноса; γ_0 —плотность горной породы.

С учетом формул (6) выражение (5) принимает вид

$$j_{m} = -\alpha_{m} \gamma_{0} \nabla U - \alpha_{m} \gamma_{0} c_{m} \left[\left(\frac{\partial \theta}{\partial T} \right)_{u} + \delta_{\theta} \right] \nabla T \tag{7}$$

Отсюда видно, что из-за неизотермичности массообменного процесса возникает дополнительный поток массы, который пропорционален величине $c_m \Big[\Big(\frac{\partial \theta}{\partial T} \Big)_u + \delta_\theta \Big].$ Следовательно, указанная величина является термоградиентным коэффициентом, отнесенным к разности влагосодержания.

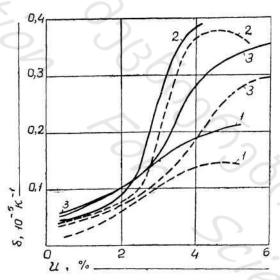


Рис. 2. Зависимость $\delta = f(U)$ при температуре 293 К для тех же горных пород

Величины термоградиентного коэффициента, определенные из выражения (7) при $j_m=0$ (рис. 2, сплошные линии), существенно отличаются от таковых, определенных из выражения (1) (см. рис. 2, пунктирные линии), и это положение необходимо учитывать при расчете термовлагопереноса в горном массиве.

Академия наук Грузинской ССР

Институт горной механики

им. Г. А. Цулукидзе

(Поступило 8.6.1984)

შ.ონიანი, ო. ლანჩავა

სამთო მასივში თერმოტენგადატანის საკითხისათვის

რეზიუმე

სამთო მასივში თერმოტენგადატანის პროცესის ანალიზის საფუძველზე შემოთავაზებულია ქანის თერმოგრადიენტული კოეფიციენტების განსაზღვრის წესი. ზოგიერთი ქანისათვის მოცემულია ამ კოეფიციენტების მნიშვნელობები.

EXPLOITATION OF DEPOSITS AND CONCENTRATION S

h. I. ONIANI, O. A. LANCHAVA

CONCERNING THE THERMO-MOISTURE TRANSFER IN A MASSIF

Summary

A technique is proposed for determining the thermo-gradient coefficients on the basis of an analysis of the thermo-moisture transfer in rocks. The values of these coefficients are presented for some rocks.

ლიტერატურა- ЛИТЕРАТУРА — REFERENCES

- 1. А. В. Лыков. Тепломассообмен. М, 1978.
- 2. Ш. И. О н и а н и, О. А. Ланчава, Ю. Р. Ксоврели. Сообщения АН ГССР, 105, N° 3, 1982.