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Abstract

A narrowly stationary two-component sequence {fi, Xi} is considered on the probability space

i>1

(,F,P). The control sequence {é‘l} (§:Q—>E, i=12,.) is discrete E={b,b,,..,b},

i>1
P(&=hb,)=p,, m=1r, i=12.., > p,=1. {X;},;, (X;:Q—>R,i=12.) is a conditionally
m=1 N

independent sequence, those members represent observations of some random variable X . The

conditional distributions P, m =1,r have unknown densities f (X), m=1r, respectively. A core

|Gi=ty >
Rosenblatt-Parzen-type estimate of the density is f (X) = z P, f..(X) constructed from the dependent

m=1

observations. The accuracy of this estimate is determined by the metric L,. A special case obtained by

using the Bartlett core and taking the smoothing coefficient as a specific sequence is considered.
2010 Mathematics Subject Classification. 62G05. 62G07

Introduction

During statistical studies of practical tasks, parametric and non-parametric estimates are
obtained. One important issue is the construction of an estimate of the density of the distribution.
Until recently, estimates were made by independent observations. Many problems require
consideration of dependent observations.

Long-term financial independence studies of investment and insurance companies are
constantly conducted in the financial market. It is necessary to assess the risks of banking investments.
For this purpose, an analysis of the flow of reinvestments is carried out, and the indicators of the

financial stability of the companies are evaluated.
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The listed and other tasks require statistical analysis not only with independent, but also with
dependent data. Research in this direction has actually just started. And there is a rich historical
experience of constructing non-parametric estimates of density through independent observations.

Let’s the quantities X;, (X; €R), i= 1,2... represent independent observations of a random
variable X . Let's say a quantity has an unknown density g(x).In M. Rosenblatt and E. In Parzen's

works (see [1], [2]), the class of core estimations is considered as a density g (X) estimation.

:%gk(an(x—xi)), M)

where {a, }nzl is a sequence of positive numbers such that
lima, = oo, a, =0(n), (2)
and the core K (x) according to Lebesgue is a integrated certain Borel function.
The accuracy of this type of density L,approximation constructed by independent

observations ([1], [3], [4]) and metrics ([5]) has been determined under different conditions.

It is known by L. Devroye (see [5]) the accuracy of the metric L, of the estimate constructed by

independent observations of the density. Let's state this result as a lemma. We will use it during the
proof of our theorem.

Definition 1 (see [5]). Let us denote by F , the set of such functions f (X) (see [5]) that satisfy
the conditions: f (X) is absolutely continuous and has a derivative almost everywhere, f', f’ are
absolutely continuous and has a derivative almost everywhere, f”, f"are bounded and continuous.

Definition 2 (see [5]). Let’s denote by @ the set of such functions (p(X) (see [5]) that satisfy the
conditions: ¢(X) is a density with a compact carrier having derivatives up to the fourth order
(including) p e F, 9" F and ¢, (x)=(1/a)p(x/a)

Definition 3 (see [5]). Let’s denote by K" the class of densities bounded on R with a compact
carrier on (see [5]), for that K(—x) = K(x)

Lemma (see [5]) Let’s the quantities X, , X, € R , i =1,2,... represent independent observations

of some random quantity X having an unknown density g(X) with a compact carrier. Let's say

g(X))dX is fair the estimattion

d,(x an) is determined by the equality (1), K(x) € K* and a, is a sequence (2), then for the quantity
EJ*(a,) < ,/ \/7 J'«/g(x dx+——sup_[

a,
oo 5] o
” KZ(x)dx, B= Ix K(x)dx,

@ € @, and the symbol *- is a composition of functions.

9*¢,) (x)

where
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If at the same time g(Xx) € F , then

EJ'(an)s\E\/%aj Jg(x)dx+é§Hg"(x)‘dxm(\/%. )

Recently, statistical analysis of samples consisting of different types of dependent observations
has start.

We will construct a core Rosenblatt-Parzen-type estimation of the density with dependent
observations. We consider conditionally independent observations. We will determine the accuracy of

the built estimate with a metric L, .
On the probabilistic space (Q, F, P) let us consider the two-component stationary (in the narrow
sense) sequence of random variables
& X (5)
Where, £:Q > E, X;:Q—>R" and E is some space.

Definition 4. The sequence {X,}

i>1

[6],[7],[8]) controlled by the sequence {fi}_

i~1

in (5) is called a conditionally independent sequence (see.
if for any natural n and the fixed trajectory
&n=(&,5,.,&)) the values X, X,,..., X, become independent and for all natural numbers i, |, n,
s Joveeen di s (ZSI <n;i<n; 1<) <j,<..<j < n) the equalities

_ =P * P *...
(thsz v---vxj|)§1n Xil‘éjl Xiz‘giz

Paan = P

are fulfilled, where 7, is the conditional distribution of the value X under the condition Y . The

v

conditionally independent sequence {X;}_ in (3) is called a sequence with chain dependence (see.

i~1
[9],[10],[11]) if {(fi }izl is a finite Markov chain with discrete time.

We are considering the case, when the members of sequence {&},.; are independent and
identically distributed discrete random variables

== (.00 1 P(5=0)=p, i

Remark: If the members of a sequence {Xi}i>l represent elements of a statistical sample or

1,_r , PP+t p, =1,

observation, they are called conditionally independent (or, accordingly, chain dependent)
observations.

To determine the accuracy of estimates constructed with dependent observations, it is necessary
to study the asymptotics of the sums of dependent random variables. In this process, the research
methods of distribution of sums of independent random variables are is extended to dependent random
variables. Markov dependence is considered in many practical and theoretical problems. It is one of
the forms of weak dependence. Other forms of weak dependence are also known. In the works [6] and
[9] are considered limit distributions of sums of conditionally independent random variables and limit
theorems for functions defined on the Markov chain. Many authors consider sums of random variables
whose joint distribution is determined by some "control" sequence of random elements. I. Bokuchava,

Z. Kvatadze and T. Shervashidze established limit distributions of normed sums for conditionally
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independent random variables (see. [7], [8]) and for random variables with chain dependence ([10],
[11]).

The study of the asymptotic behavior of the sums of dependent random variables made it
possible to consider dependent observations in the theory of statistical estimates. From the second half
of the twentieth century, the construction of statistical estimates with dependent observations began.
In this regard, the question of constructing a non-parametric estimate of the density on the dependent
observations is particularly relevant. In the work of Yakowitz Sidney [12], estimates of density and
regression coefficients are constructed from observations bound in a Markov chain. The accuracy of

the density estimation constructed by dependent observations by the metric L, is known (see [13]).

In the series of works [14-16], the Rosenblatt-Parzen-type kernel estimates of the density are
constructed with chain dependence observations and conditionally independent observations. Their

approximation accuracy with metrics L, and L, is considered. Z. Kvatadze and B. Pharjiani's case r =2

, the accuracy of the estimations constructed with both types of dependent observations was
determined by metric L, (see [14]). In general, the estimate accuracy constructed for observations
with chain dependent is established L, (see [15]) and L, metrics (see [16]).

Methodology

During the proof of the theorem is applied the method I. Bokuchava, T. Shervashidze and Z.
Kvatadze presented by in [10, 11]. Using this method, they determined the limit distributions of the
normed sums of conditionally independent sequences (see [8]) and sequenge with chain dependence.
The asymptotics of the conditional and unconditional distributions of the geometric mean of
conditionally independent random variables and random variables with chain dependence were
investigated (see [17], [18]). This method became possible to use in the theory of statistical estimations
(see [14]). The method uses the decomposition of the sum to be estimated into sums corresponding to

the values of the control sequence. On the fixed trajectory &, = (&.4,,...&,) of the control sequence
(5), the second components of the sequence (observations {Xi}izl) become independent. The sums

obtained from them are uncorrelated and consist of independent and uniformly distributed random
variables.
Main Results

Let’s consider the sequence (5). &, 1=12,..., are independent and identically distributed

discrete random variables. Let's assume that
E={b,b,..b}; P(&=b)=p ,i=Lr, p+p,+..+p =1

Let us fix the trajectory Eln = (51, Eoyenny §n) of the sequence {gﬁ }izl. In this case, we denote by the

values v, (1), v, (2)....,v, (r), the frequencies of accepting the values b;,b, ,...,b, (respectively) by the

ey Vg

members ¢, &,,..., &, of the sequence {&}

i>1”

n J—
V”(i):;'@k:“)’ i=1r,

where | is the indicator function. Obviously the equality is fair
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v,(1)+v,(2)+...+v,(r)=n.

Theorem. Let’s consider the sequence (5). Let’s say that members of the control sequence { }m
(&:Q>{b,b,,...b

r}) are independent, identically distributed, discrete random variables
(E={b.b,....b}), P(&=h)=p, k =1r, p,+p,+..+p,=1. Let us say that the sequence of

positive numbers a, satisfies the conditions (2). Let's say that for each function ¥ :Z — R, for that
EW (&) <o when n—> oooccurs the convergence

1 n
— X Y(&G)-EY(&4)  ae. (6)
nj=1

Let’s say that the members of the sequence {X; }.>1 are conditionally independent observations on some

random variable X and the conditional distributions 7 =b; » =1,r have unknown densities f, (x),

=1r witha compact supports. If inequalities
i ) —
o ncs sy @)
n ) n
are fulfilled for frequencies v, (i), i =1,r, then for each natural number N, the density estimate

:Zl:pifi(x 1sthe sum f ZK(

), where K(X) e K*, and for the value
J@)=[|f,

—00

f_(x)}dx the estimate

EJ(an)sJ%Ta(Zj p, f.(X)dx +

i=1 _
Zj supj
n i=1

up [ dx+—— z\fw[\/%J 8)

(fi*e.) (9

is satisfied, where

—00

Ifalso f,(x)eF, i=1r, then

EJ(a)<\/7 \fzf pifi(xdx+—Zp, ‘f”(x)‘dx+ Z\fm[\/%j 9)

n i=1
Proof. Of Theorem. Let’s apply the method used in [10] [11]. Let's decompose the sum f (x,a,)into r

sums. Let's fix the trajectory E = (&,¢,,--,&,) . For each number i (1<i <r), we separately group the

terms of those observations X, X,,..., X, out of the sum of f,(

X, ), the corresponding &1, Sy s-++y Sy
control random variables of which took the value 9. Let's renumber the members of each sum

7,()=0, r ()=min{j|z, < j<n &=b};i=1r, m=1Lv ().
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It turns out r sequence of indices

(i), 7,(), o\ 7, 0), i=Lr
The equalities are fulfilled for them

&w=b, i=Lr, m=Lv(i).

Now let's present the sum fn (x,a,) as following

fLona) = 20 xa),

i=1
where
Vi (i)

fin (X’

(I) T (|)))

It is obvious that if v, (i) =0, then the corresponding sum f, (x,a,), i= 1,r does not exist.
Let us show that are finite Efn (x, an) and Dfn (X, an) values.
Let's represent the value Efn (x,a,) as a conditional mathematical expectation on the fixed

trajectory &,

v

E( a,)= E{E(f(xa)|§1n

a,)[&,)}-

Let us take into account that, random variables V|, (l) (1= 1, I) are commensurate with respect
to the o -algebra induced by the partitioning of the space {2 generated when fixing the trajectory &,

(see [19]). Therefore, we can take them out of the determined by condition Sgln conditional

mathematical expectation sign. Random variables X, ), m=1v, (i) are independent when the

trajectory &, is fixed. They have the same conditional distribution 'le‘ -, With density f;(X).
r v, ( v, (i)
= LB TR Z K(@a(x= X, ) 1)} =

St E e (e X ) £ Ea [ K - (e

i=1 n ( i=l _»

i
Based on the condition (6), the equality EV”—() = p, is fulfilled. Let's take into account that
n

K(x) is an even function and transform the variable a,(u—Xx) =t under the integral sign. Will be

obtained the equality
Ef, (xa,)= Y p, [ KO (ai x)dt.
i=1 —00 n

K(x) is a density and f,(x) is a density bounded by a finite constant. Therefore, Efn (x, an) isa
finite quantity.

Let us show that the quantity Df, (x,a,) is finite.

Df, (x.a,) = E{E([f, (x.a,) ~Ef, (x.a,) |£,)}=
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-) (xa)-e3 Wi (xa )15

A

X an)_ Efin (X’an )]2 | (:Jrln)}

:
>
\-/
~
—h>

On the fixed trajectory Eln, the quantities K(an(X—XTm(i))), m=1v,(i), i=Lr and

accordingly, the sums f (X a,), i= 1,1 are independent.

Df, (x.a E{E(Z( ) [f.(x.a,)-Ef, (x.a,)&,) =

r

zE«V“n(' oy, (xa,) - B, (a1 16,3 =

r va(i)

—ZE{(V“n(')E([ Z(K(( X))~ EK (& (x= X, o) D 1€} =

1= m=.

r va(i)

—ZE{(V”(')( (“)>E<Z[K(( X))~ EK (2, (x=X_ o )P &)=

-~ n

= iZ_llE{%E(vn (i) E[K (an (x- xq(i))) —EK (an (x- xrl(i)))]2 |£.)}=

:_ZJ'[K

i=1 "o

- [ K(a, (x=y))f, (NlyP ﬂ(u)duE(V”T(i))
v (i)

Apply Equation E-—"—-~
n

é"—.8

= p, again. Let's apply the same variable transformation inside the

integral sign as when considering the expression Ef (x,a,). Will be obtained the equality

Zp. j [K(t)- j ))f,(y)dyT’ f(—+x)dt

Considering the properties of K(X) and equalities (2), it is clear that Dfn (x,a,) is finite.

Let's estimate EJ(a,).

a,) = FOOx| &)1 <

dx

r 0

<> E[E( j

i=1 S

Each summand A is estimated in the same way.

50

%0 f, (xa)- Pt (0

fin)lsi/\ (10)

dx

A=E[E(j

|n(X a ) pl fI(X) gln)]

Vn—(i) fin(xian) _Vn_(i) fi(X) dx o
n n

&<

2 £ 60— 1,0
n

< E[E(T

£+ EIE(|

Georgian Scientists/Jo®mg9ewo d93609Mgdo @. 5 N 1, 2023 314



fl(x.a,) = ,00]dx EI=A+A,

&3+ E{El j

< E{E['[

) _ pi‘l f,(0)]x
n

v, (I)‘

fin (x,a,) is a density estimate f;(x) constructed from independent and identically distributed

fi(x.a,) = £,00|dx|, I}, we apply

observations on a fixed trajectory &, . To estimate the quantity [E j

inequality (3).

A= E#V“T“)‘[E [ fa0xan) = fix)|x| &, 1=

—eqel g S i s Zk(a (x=X,_ o)~ (x| &, <
sE{V“rf') \f/ J«/f(x dX+——Sali£)J;o feg,) (x) X +0( V?Ei))]}

According to the condition of theorem (6), the equations are fulfilled

V_()_pl .imvn_(i)zp

n—oo

Therefore v, (i) ~ np, and accordingly we have equality.

o ol%)

The following assessment of the summand A, is valid

\f o [ JEOdEL ™Y "(') / }+——supj frp,) (e n('))+

a>0

+°(J7)Evn(l) \/7 I fi(x dE«/ () fa'[:satig)[o fxp,) (x)dx+pio(\/a%”).

Let's apply the inequality E\/ AU \/E V“T(I) = \/E .

P B N a
A, < \FFI f0)dx+2 5 sugjwf ?,) (x)dx+pio(\/;).

We take the value (V"—(I)— p,) out of the sign of the conditional expectation (see [19]). Let's
n

apply condition (6) and inequality (7). The following inequality will be obtained

v (i) % (.) \/ v (i) e

—==—p,|EC| [f;(x)dx El-—"—= <JEF==-p) <, .
O p e 10010 - ¢y < S

Finally, the following estimation of the summand A will be obtained

S\/a%‘a /%I«/f(xdewBi'salfJ; frp,)

We apply this estimation in inequality (10) and will be obtained the estimation of theorem (8).

A2=E[
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The estimation of (9) is obtained directly from (8). Let's apply the following fact shown in [5]
while proving the inequality of Lemma (4). For g(x)eF class functions, the expression

sup I (9*p, )” (x)|dx does not depend on the selection of the function ¢(x)e @, and the equality is
a>0 _o
shown
supj g*(pa (x) dx_ dx
a>0 _o

Corollary 1. If under the conditions K (X) of theorem is Bartlett's core
— 3
K (X) =K (X) = Z(l_ X2)I[\x\sl]

Then for each natural number n is the estimation of the density f Z p; f, () is presented by

sum

f(xa

1
(RS
al'l

and for quantity J(a,) =

a,)— I?(X))dx , we have the estimate

El(a,) < \/%\/gif p, f.(x)dx +

+—Z p,supj (fi*p,) (X)}dXJr \/C7i+0(\/a;”) : (11)

1,r, then the inequality is fulfilled

EJ(a )<\/§\/72J' p, f, (X)dx + ZZp,j f"(x)}dx+—z\/7+o( -y . (12)

n i=1 —0

—00

If also f

Proof. Tt is clear that K(—x)=K(x), K (x)< % and K (x) have a compact support. Therefore,

it satisfies the conditions of the theorem. The inequalities (11) and (12) are obtained from (8) and (9)
if we calculate @ and f the quantities

:\/IK \/j(l x?)2dx = \/g

_OO 27 _3 2 4 _1
_[Ox K(x)dx_Z.[l(x - X )dx_g.

Corollary 2. If we apply the sequence a, = Jn under the conditions of Corollary 1, we obtain

the estimation of density f Z p, f;
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f;(x,an)=ﬁi<1—[ﬁ<x—xi)]Z)I

The estimations are obtained from inequalities (11) and (12)

EJ'(a,)< \/_\/72.[ p, f.(xX)dx +
L 1
(f*p,) (x)}dx+ n Z\/E+o(%)

[x=X; ‘Sﬁ]

+—Zp,supj

a>0 _

EJ'(a,) < [(ZIﬂ/plfl(deJr—Zp,

Discussion

f"(x)‘dx+ Zﬁ +o(%)

00

Let's note that when proving the theorem, the trajectory of the control sequence
é?m z(fl,fz,..,fn) is fixed and the quantity EJ(a,) is presented asEJ(a,) = E{E(J (a,) é?ln)} This

method makes it possible to use the independence of observations X,, X,,..., X, on a fixed trajectory.

At this time, it becomes possible to expand the estimated sum by the method presented in [11] and
[15]. Grouping of identically distributed values into one sum according to the values of the control
sequence is used. Each sum is then represented as two sums of centered quantities. Estimations for one
of them are written down using the methods used in [10] and [11]. The sums of the second type are

evaluated by the classical results obtained in {5}. The measurability of the quantities v, (i) and their
compositions with continuous functions (see [19]) with respect to the sigma algebra generated by the

division of the probability space is used when fixing the trajectory f_ln .

Conclusion.

With the method used in the paper, it is possible to determine the exact upper boundaries of
the obtained estimates. The method gives the possibility to be used in determining the accuracy of
other (including non-parametric) estimates.

We would like to be thankful to our colleague Prof. Tengiz Shervashidze and will honor his
bright memory.
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©53m30090wo  Jgdmbzq3000 LBoOYJIOL  X5FJdoL  Sbod3EHMmEGH03oL  Tgbfoges. 3
36MHmEqldo  bads ©IM30909  Jgdmbzg30m  BOOEIMS  K5TJOOL  Fobsfoegdols
33930L 390000l sIM 300 J9dmbgg3000 LOWOWYJODY A93OEMDS. dsbobogds
956303000 ©5dM30©YOMEgds. ol LGOI ©sdM30YdMEgdol ghm-ghmo  Labgs.
365350 53BHMM0 0borsgls 0ligod 98mbzg30m LOOWYMS X 5TJOL, MMM JMNMIO30
396500905 29b0LyBEOZMGds F98mbg9300 9egdgbEms G500y ,005MM39w 0 J0dEIZOMIOM.
0. 0m319B5350, M. 8963500098 S B. 3505998 49EYFOBIL 30MHMDOMIE ITMY30HOJO
(Bokuchava I. V. (1984) Limit theorems for conditionally independent sequences. (in Russian)
Teor. Verojatnost. i Primenen.-MathNet.Ru XXIX. (1984). Nel, pp. 192-193.1984. Theory of
probability and its applications, 1985, 29:1, 190-196; Kvatadze Z., Shervashidze T. (2008) Some
limit theorems for I.I.D. and conditionally independent random variables. The Second
International Conference, “Problems of Cybernetics and Informatics“. September 10-12, 2008.
Baku, Azerbaijan. “Applied Stochastic Analysis” www.pci2008.science.az/4/12.pdf. Azerbaijan
National Academy of Sciences. INSTITUTE OF INFORMATION TECHNOLOGY. Printing House
of “Information Technology” Baku. 2008. Vol. II. pp. 217-219) s %5332965 ©59M300090)0
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(I. V. Bokuchava, Z. Kvatadze, T. Shervashidze, On limit theorems for random vectors controlled
by a Markov chain. Probability theory and mathematical statistics, vol. I (Vilnius, 1985), 231-250,
VNU Sci. Press, Utrecht, 1987; Kvatadze Z., Shervashidze T. (1987) On limit theorems for
conditionally independent random variable controlled by a finite Markov chain. Probability
theory and mathematical statistics. (Proc. 5th Japan-USSR Symposium on Probability Theory.
Kyoto. 1986). Lecture Notes in Mathematics, 1299: 250-259. Springer-Verlag. Berlin (Germany))
3900b3930000 LoEWOYGdOL BMOTOMYJOMWO K5TJOOL BOZFIOHOMO Jobsforgdgdo.
565356599 Jgioligdoms  0gm®mosdo 3609369 mzsbo  sEY0w0  9BMdS
3965fogdol  ¢Ebmdo L0d33M030L  Tgxsligdsl. 8. GMBYBdWSEHOL ©s 9. 39OHBYbOL
653039030 (M. Rosenblatt (1956), Remarks on some nonparametric estimates of a density
function. Ann. Math. Statist. 27, Chicago, 832-837, E. Parzen (1962), On estimation of a
probability density function and mode. Ann. Math. Statist.33, Stanford, USA, 1065-1076)
2956boeos  ©IIMY30009890 330639090000  93gdo 03330030l  Am3zsbo
99535b90900L  3¢0sl0. (36MdOW0s 53 Fgr3oligdgdol Loty L, (E. A. Nadaraya (1983),
Nonparametric estimation of the probability density and regression curve. (in Russian) Tbilisi

State Univ. Press, 1983) oo L, (Devroye L., Gyorfi L. Nonparametric density estimation: the L;

view. Wiley series in probability and mathematical statistics, Canada: John Wiley & Sons; 1985.
p. 367) 393©039000.

©58Mm3009d  F9dmbgzg30m BOOEIMS K5dgdoL  SLOIZGHMEGHIM0  YJngsJ3930L
d9L(o3050 GgLodegdgE0 F9HSS BEHOEOLEHOIME F9RLYGIIMDS MYMEOH05TO ITMIOEIOVIEO
©53300390900L  gobboegs.  36mMdo0s 10I3ZMO30L  MV35MTYBHOIO  TgRolds o
6930900l 30953030963 JO0L FgxBsLYdGd0 FoM3M30L XoF39® F93MME0 33003989000
(Yakowitz Sidney (1989) Nonparametric density and regression estimation for Markov sequences
without mixing assumptions. 85721-Journal of Multivariate Analysis, 30: 124-136. Arisona,
USA). sbg39 50996005 ©59m3009000 9330603909300 53900 1508330030l
39535b900L LobMLEg L, 39E®o30m (J. Meloche. Asymptotic behavior of the mean integrated
squared error of kernel density estimators for dependent observations. Canadian Journal of
Statistics. 2009., 18 (3): p. 205-211). b. J3505dol s . BoGx0sbol BogH 539890

10933600308  gEMm3s60  TgBoLYds  30MHMBOMOE  HTMIO0EIOIO S RIFZIMO©
©53M300YIMWO 5330039090000 5 OPAIbOE0s Fsmo LoBMLEg L, 99¢Hoz00 od
396dm 990m0bg93580, HMEgLsE d0sMmM39e0 J0dEI3MMds 0gdL M 60369 mdsL (=2 )
(Z, Kvatadze, B. Phardjiani. On the Exsactness of Distribution Density Estimates Constructed by
Some Class of Dependent Observations. Mathematics and Statistics. 2019 Vol. 7(4), pp. 135-145.
SAN JOSE). sbg3g 00090mwos xoF3MeMs@ sdm30gdmo  9gxsligdgdoom 93900
2 m3z960 99x358900L LobMLEg L, IgBHMozom > 2 §gdmbggzsdog.

Pobosdqdstyg  6536M™ITo  30MHMOOMIE  IMY30IOIO 533061390900
5390M0s 10933600306  OHMBYBEIWSBH-350Bgbol  BHo3olb  ammgzsbo  gxmaligds.
39909969005 0. dM3MBO39L, 0. FgM3580dob s b. J3smsdol Jowgdmwo d9wga00
3060MO0MOQ®  IMY300909  Fgdmbzgzom  BoEOIMS  K5JOOL  BOIIMOMO
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39b5fogdols Gglobgd s sRJ60W0s 53900 Fgusligdol LoBMLEg L, d9EHM030m.
09mM9dob ©3E303gO0L OML 25dm0ygbgds m. JgM35d0dob s b. J3s05dol doge
3oBbommmo  8gmm@o.  ©sBodboGmYR & =(&,5,,..E)  HHIHMH0sDY  bogds
d9L5x35B989w0 X sdol oA 3FSMMZ9w0 J0dEY3MMOOL FEYMTsMJMOJdOL Fglisdsdol
X90905. gl X539d0  5M53MOIJWOMYOME00s.  ©IROJLOMGOM  BHMSIEGHMO05DY
000MYM0 X5Fob 9950096900 Tgbs3M909d0 ©HTMY30000Gd0s. o8MmYgbgd s
x5330L  amdsmymdIdby 2sBlsbEgewMmo v, (i) (i=15) 896J30980L Bmdsmds
(Kvatadze Z., Kvatadze TS. Limiting Distribution of a Sequence of Functions Defined on a
Markov Chain. Proceedings of A. Razmadze Mathematical institute. Vol. 174. 2020. issue 2,
199-205) &, ®&®M99dGHMM00L ©s530gL0MJB0M J0MGOO SBSMIMO LOZMEOL VIYMGBOM
06306090 Mwo o 5EggdMOl J0TsOo.

398myg9gbgdmeo  IgomEo d9L5dEPOEMBSL  0dErg3s FoEgdM  0gbsl
58300930 3300390900 53900 bbgs BHodol Jgxsligdols Lobmli@g.
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