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Abstract

The study of isolated preparations of experimental white rats of 14 months and older reveals that the
longitudinal  orientation  of  cardiomyocytes  is  replaced  by  an  angular  orientation  in  older  mice.  The
number and structural integrity of myofibrils occupy one of the leading places in the regulation of the
contraction-relaxation cycle and the implementation of the adaptive capabilities of the myocardium in
the normal functioning of cardiomyocytes. Our experimental studies aim at describing the quantitative
and  morphological  characteristics  of  myofibrils  in  rats  of  two  age  groups  and  analyzing  the
morphological and functional results. Isolated heart preparations were examined in two age groups of
white  rats  (middle  -  8-14  years;  elderly  -  14  months  and  more.  The  number  of  rats  in  each  group
amounted to six) using different histological staining methods. The results obtained show that,
compared with middle-aged rats, the development of degenerative changes in myofibrils is observed
in old rats, which is manifested in structural inferiority and quantitative reduction. Degenerative
changes revealed with age at the intracellular level can be considered an important morphological basis
for the formation of functional heart failure and the depletion of adaptive capabilities.
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