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Introduction 

Strengthening the durability of Azerbaijan’s oil and gas infrastructure against natural disasters is a 

critical priority for researchers and industry stakeholders. Pipelines that transport hydrocarbons, while 

integral to national and transnational energy supply, are especially vulnerable due to the volatile nature 
of their contents. A failure can lead to irreparable environmental damage, human casualties, and costly 

socioeconomic disruptions (Lerche et al., 2014). The growing reliance on pipelines for interregional 

energy exchange, coupled with the apparent increase in natural disaster frequency, has underscored the 
need for comprehensive risk assessments (Krausmann et al, 2011). These assessments must extend 

beyond purely technical criteria to include geopolitical and environmental considerations, reflecting the 

international implications of pipeline failures and the cross-border nature of catastrophic events. 

Climate change adds further complexity by intensifying extreme weather events and altering hazard 
patterns, placing critical infrastructure under unprecedented levels of stress (Zio, 2016). As natural 

disasters become more frequent and severe, safeguarding pipelines requires a flexible and forward-

looking framework capable of integrating diverse data sources, advanced modeling, and predictive 
analytics. This forward-thinking perspective enables risk assessments that anticipate future scenarios 

rather than merely responding to current conditions. 
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Abstract 

This paper introduces a newly developed risk-assessment framework that 

combines Kernel Density Estimation (KDE) with Geographic Information 

System (GIS) technology to analyze multiple hazards, including earthquakes, 

floods, landslides, mud volcanoes, and soil erosion, for the Baku-Tbilisi-

Ceyhan pipeline in Azerbaijan. By integrating hazard-specific parameters into 

a unified risk matrix, each hazard’s contribution is weighted, refined, and 

aggregated to produce a spatially explicit, combined risk map. KDE smooths 

hazard intensities and reveals overlaps among different risk factors. The 

resulting high-resolution maps enable more targeted prevention and response 

measures, guiding planners and stakeholders toward effective pipeline 

protection strategies. Although the model can demand computational power, 

it remains scalable and flexible, allowing for adaptation to additional hazards 

or expanded geographical areas. Furthermore, the methodology underscores 

the importance of cross-validation in setting KDE bandwidth and in 

calibrating hazard weights to ensure reliable outputs. Preliminary testing 

indicates that this integrated model improves the clarity of risk data, 

highlights areas needing immediate attention, and supports resilience 

planning across the pipeline corridor. This work can be applied more broadly 

to critical infrastructure projects in regions where multiple hazards coincide, 

thereby aiding decision-making processes for disaster risk reduction and 

sustainable development. Future research will focus on refining statistical 

models for inter-hazard correlations and incorporating machine learning for 

predictive analytics. The framework stands as a tool to maintain pipeline 

integrity in the face of evolving environmental threats. 
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Developing robust methodologies to quantify and mitigate these risks is thus an imperative, 
particularly in regions like Azerbaijan where seismic activity, floods, landslides, and mud volcanoes 

pose substantial threats (Othman et al., 2023). With pipelines traversing extensive distances across 

varied terrains, even localized disruptions can have extensive consequences. Consequently, the 
scientific community must invest in innovative tools and interdisciplinary strategies that address 

physical vulnerabilities, regulatory complexities, and cross-border interdependencies. Adopting a 

multi-hazard approach allows for a holistic understanding of pipeline resilience, thereby guiding more 
effective risk management, informed policy-making, and international collaboration.  

Notably, specific natural disasters recognized in Azerbaijan can directly impact onshore pipelines, 

highlighting the urgency for targeted, data-driven solutions (Amirova‐Mammadova, 2018; Bagirov et 

al., 2019): 
1. Earthquakes: Azerbaijan experiences substantial seismic activity due to its location in an 

earthquake-prone zone (Alizadeh et al., 2017). Sudden ground movements or shifts can displace or 

fracture pipelines. Any rupture in a pipeline carrying hydrocarbons may cause leaks and, in severe 
instances, lead to explosions or fires. 

2. Floods: Flash floods or prolonged heavy rainfall can result in rapid water accumulation and 

significant soil erosion1. High-velocity water flows may directly damage exposed pipeline segments, 

while erosion can undermine the structural support of buried pipelines, increasing the risk of bending 
or rupturing. 

3. Landslides: In mountainous or hilly terrains, landslides can occur, particularly following intense 

precipitation or seismic events2. The downward movement of rock and soil can bury pipelines or 
exert forces beyond their design limits, leading to material failure. 

4. Mud Volcanoes: Azerbaijan is well-known for its numerous mud volcanoes (Kadirov et al., 2005). 

These geological formations can erupt violently, expelling hot mud and gases capable of 
overheating, encasing, or fracturing adjacent pipelines, ultimately causing leaks or more severe 

accidents (Panahi, 2005). 

5. Soil Erosion: Continuous erosion, often accelerated by flooding or heavy rainfall, can gradually 

expose pipelines designed to remain buried (Othman et al., 2023). Without adequate coverage, 
pipelines become vulnerable to external impacts and stress that can lead to cracks or breaks. 

6. Corrosion (Environmental Degradation): While not considered a conventional natural hazard, 

corrosion is a significant environmental threat to pipelines. Humid or saline conditions accelerate 
metal deterioration (Cheng, 2015), and if not detected, corrosion can thin pipeline walls, resulting 

in leaks or complete structural failure. 

7. Extreme Weather Conditions: Severe weather events—such as powerful storms, lightning strikes, 
or extreme temperature fluctuations—can damage pipelines directly or trigger secondary hazards 

like landslides or floods (Katopodis et al., 2019). While pipelines are built to withstand local climate 

norms, unusually harsh conditions can exceed their tolerance thresholds. 

8. Wildfires: High temperatures from wildfires can damage pipelines and their protective infrastructure 
(Novacheck et al., 2021). Moreover, the burning of nearby vegetation may contribute to soil erosion, 

further exposing pipelines to potential mechanical stresses. 

9. Ground Subsidence: This phenomenon, caused by natural geological activity or human practices 
(e.g., mining, groundwater extraction), results in the gradual sinking of the ground surface (Oruji et 

al., 2022). Uneven subsidence can place bending stress on pipelines, increasing the likelihood of 

ruptures. 

Typically, the practice is to represent the impact and risk values for each hazard individually on 
separate maps. A risk matrix serves as a visual aid, facilitating the evaluation of the cumulative risk 

level associated with different occurrences, including natural disasters. This matrix is instrumental in 

pinpointing the probability and potential impact of a given event, thereby allocating it a precise risk 
rating. However, the variety of natural disasters differs by location, resulting in a diverse set of risk 

maps. This diversity can introduce complexities in managing and interpreting the array of maps 

(Samany et al., 2022).    

                                                             
1 Pipeline safety: Potential for damage to pipeline facilities caused by flooding, river scour, and river channel migration (2019). 
https://www.federalregister.gov/documents/2019/04/11/2019-07132/pipeline-safety-potential-for-damage-to-pipeline-

facilities-caused-by-flooding-river-scour-and-river 
2 Guidelines for Constructing Natural Gas and Liquid Hydrocarbon Pipelines Through Areas Prone to Landslide and 
Subsidence Hazards (2009). https://rosap.ntl.bts.gov/view/dot/34640 

https://www.federalregister.gov/documents/2019/04/11/2019-07132/pipeline-safety-potential-for-damage-to-pipeline-facilities-caused-by-flooding-river-scour-and-river
https://www.federalregister.gov/documents/2019/04/11/2019-07132/pipeline-safety-potential-for-damage-to-pipeline-facilities-caused-by-flooding-river-scour-and-river
https://rosap.ntl.bts.gov/view/dot/34640
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Using a combined approach helps streamline this complexity by integrating multiple risk factors into 
a unified visual representation, simplifying analysis and decision-making (Falcone et al., 2022). 

To derive a combined risk value encompassing all-natural disasters, one could consider aggregating 

the distinct risk values (Fotios et al., 2022) for each disaster. However, this method presupposes that all 
these incidents occur independently, a condition that might not always hold true. The overall risk 

assessment can be significantly swayed by the interrelations and mutual influences existing between 

various natural disasters. Recognizing these interdependencies is essential in accurately determining the 
combined risk value.  

To maintain the integrity of all assessed risk values, the individual combined risk scores are connected 

to beforehand computed and proportionately weighted risk values for each type of natural disaster. 

A critical initial phase involves quantifying the risk (Gemma et al., 2022) tied to each possible natural 
disaster. This could involve analyzing historical data on the frequency of natural disasters like 

earthquakes, floods, wildfires, and so on, within a targeted area to gauge their probability. 

The core objective is to create a robust, multi-dimensional risk assessment model that not only 
identifies potential risks but also quantifies them in a meaningful and actionable manner (Rasouli & 

Imrani, 2023). To achieve this, we will employ a risk rating matrix grounded in rigorous mathematical 

formulations, enabling a detailed and nuanced understanding of risk levels. This matrix will integrate 

various risk factors listed above to generate a composite risk score for pipeline systems in the context 
of natural disasters. By combining the spatial analysis capabilities of GIS with the mathematical rigor 

of risk score calculations, this research endeavors to offer a novel and practical tool for policymakers, 

engineers, and disaster management professionals.  
The ultimate goal is to enhance decision-making processes, facilitate proactive risk mitigation 

strategies, and contribute to the resilience and safety of pipeline infrastructures in the face of 

increasingly unpredictable natural events. 

Methods and Materials 

In this research, we utilize adjusted risk matrices that correspond to each relevant hazard type - 

encompassing both classical natural disasters (e.g., earthquakes, floods) and environment-based threats 
(e.g., corrosion). Each hazard is weighted according to its relative impact on pipeline integrity. These 

weighted factors are then refined using Kernel Density Estimation (KDE) techniques, converting the 

collected risk scores into a 2D array (Gramacki, 2017). The data assigned to each cell within these 
matrices can be stored in any relational database (Nasser, 2018) or in straightforward file formats such 

as comma-separated values (CSV) or JSON. This flexibility enables seamless integration with popular 

GIS tools like ESRI ArcGIS or QGIS, where the 2D risk arrays can be visualized, analyzed, and used 
to inform decisions on pipeline protection and maintenance. 

    2.1 Area of observation 

This research area (Fig.1) situated within Azerbaijan, known for its susceptibility to various natural 
disasters such as earthquakes, landslides, floods, and mud volcanoes. This region is identified as the 

"valley of mud volcanoes" Moreover, satellite imagery revealed the presence of strong wind patterns 

and noticeable geological faults in the area.  

2.2 Risk Matrix 

When analyzing the effects of natural disasters on pipeline systems, employing a risk matrix is an 
essential step for illustrating the degree of risk. This study utilizes a standard 5×5 risk matrix (Figure 

2), which classifies threats according to their likelihood (ranging from rare to nearly certain) and 

potential consequences (spanning from negligible to disastrous) (Blokdyk, 2018). By adopting a five-

tier system, each hazard can be systematically plotted on the grid, where higher probability and severity 
correspond to higher risk values. 

  Although summing the individual risk values for all-natural disasters can yield an overall, aggregated 

risk score, this approach assumes complete independence among events, which is not always accurate. 
Correlations and interdependencies between different types of natural disasters can significantly alter 

the true combined risk. Accordingly, such factors must be considered when determining an aggregated 

risk value. 
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Figure 1.  Area of observation 

In spatial terms, each risk factor is mapped onto polygonal zones varying from as small as 50×50 

meters to areas of several square kilometers (Han et al., 2010). These zones are categorized by risk level 

according to the matrix. Table 1 outlines a distribution framework for assigning integer or categorical 
values (e.g., “Low,” “Moderate,” “High”) to each zone based on local hazard intensity. This 

classification is a cornerstone for subsequent calculations in a GIS environment, ensuring that risk 

values can be systematically integrated with geospatial data. As a result, risk maps visualize both 

individual and aggregated hazards, thereby aiding in pipeline safety assessments and informing targeted 
mitigation strategies. 

 

Figure 2. Risk matrix of 5x5 elements 

Table 1. Distribution of risk levels according to ND factor 

Natural Disaster 
Risk Level 

(1-5, 5 is highest) 
Description Color 

Landslides 4 
Soil shifts in hilly or mountainous regions that 
have the potential to disrupt or harm pipelines. 

Yellow 

Earthquakes 5 
Seismic activity or ruptures leading to significant 
damages 

Red 

Flooding 3 Lead to erosion or the accumulation of sediment Yellow 
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Corrosion from soil 

chemistry 
3 

Specific soil environments may extend the 
corrosion, resulting in the deterioration of pipeline 
materials 

Yellow 

2.3 Determining the Risk Values 

To address numerous hazard events, the contributions from each are consolidated into a unified risk 

score. We begin by computing the separate risk scores (𝑅𝑖) for every hazard, following the formula: 

𝑅𝑖  =  𝐿𝑖  ×  𝐶𝑖  

where 𝐿𝑖 represents the likelihood and 𝐶𝑖  denotes the impact of the 𝑖𝑡ℎ hazard. After determining the 

individual risk scores for each hazard (𝑅1, 𝑅2, …, 𝑅𝑛), the average risk score (𝑅𝑎𝑣𝑔) is computed by 

the subsequent method: 

𝑅𝑎𝑣𝑔 = 
1

𝑛
   ∑ 𝑅𝑖

𝑛
𝑖=1  

In this scenario, n represents the total count of hazards or events under evaluation. Averaging these 

values is one of several methods to consolidate the risk data, and it is particularly effective for the 

purposes of mapping. It's important to note that the risk scores will be visually differentiated using a 

color-coding system: scores ranging from 1 to 6 will be marked in Green, indicating low risk; scores 
between 7 and 12 will be highlighted in Yellow, signifying medium risk; and scores from 13 to 25 will 

be denoted in Red, representing high risk. Additionally, each specific value within these ranges could 

be represented by varying shades of the respective color, providing a gradient effect for more nuanced 
visualization Fig. 2. 

Indeed, the method of calculating an aggregate risk score, as previously described, presumes that each 

hazard is independent and of equal importance, an assumption that might not hold true in more complex 

scenarios. To address this, our approach will integrate a weighting system, which allows for the 
differentiation in the significance of various hazards or the interdependencies between events. In this 

system, each hazard is assigned a weight (𝒘𝒊) reflecting its relative importance or impact. These weights 

are typically values ranging from 0 to 1, with the sum of all weights equaling 1. This ensures that the 
overall significance of all hazards is proportionately distributed. Following the assignment of weights, 

the next step involves calculating the weighted risk score (𝑅𝑤𝑖) for each hazard. This is achieved by: 

𝑅𝑤𝑖  =  𝑤𝑖  ×  𝑅𝑖  

To obtain the comprehensive risk score (𝑅𝑡𝑜𝑡𝑎𝑙), the process involves summing all the weighted risk 
scores for each hazard: 

𝑅𝑡𝑜𝑡𝑎𝑙  =  ∑ 𝑅wi

𝑛

𝑖=1
 

This total risk score is then categorized using the designated color-coding system based on its value: 

𝐶𝑜𝑙𝑜𝑟(𝑅𝑡𝑜𝑡𝑎𝑙)  = {

𝐺𝑟𝑒𝑒𝑛   𝑖𝑓 1 ≤ 𝑅𝑡𝑜𝑡𝑎𝑙 ≤ 6        
𝑌𝑒𝑙𝑙𝑜𝑤  𝑖𝑓 7 ≤ 𝑅𝑡𝑜𝑡𝑎𝑙 ≤ 12     
𝑅𝑒𝑑       𝑖𝑓 13 ≤ 𝑅𝑡𝑜𝑡𝑎𝑙 ≤ 25  

 

This weighted approach enhances realism by recognizing that certain hazards (e.g., high-magnitude 

earthquakes) may be far more consequential than others (e.g., minor flooding). However, neither the 

averaging nor the weighted-sum methods inherently capture potential correlations among hazards—
such as how an earthquake might trigger a landslide or how floods may exacerbate soil erosion. 

Capturing these interdependencies typically requires more advanced statistical or probabilistic models 

(e.g., Copulas, Bayesian Networks, or multi-variate correlation matrices3). 

Despite these limitations, weighted risk calculations represent a practical, GIS-friendly means of 
consolidating disparate hazards into a single metric. By overlaying the final risk values on geospatial 

layers, decision-makers can pinpoint pipeline segments requiring greater inspection, maintenance, or 

protective measures. This approach also aligns well with advanced techniques, such as Kernel Density 
Estimation, which can further smooth risk values spatially and highlight high-risk clusters within the 

study region, supporting more robust and proactive risk management. 

 2. 4 Evaluation of 2D risk scores using Gauss kernel method 

The 2D risk score for natural disasters can be evaluated using geospatial parameters, such as the 

magnitude of previous events (for earthquakes, landslides, etc.), proximity to fault lines, soil type, slope, 

                                                             
3 Multivariate correlations, https://numericalexpert.com/tutorials/statistics/multivarcorr.php 
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and rainfall data (for floods and soil erosion). The method also assumes that each type of disaster has 
its own unique contributing factors. A Gauss kernel function4 is often used in spatial data analysis 

because it is smooth, symmetric, and its value decreases with distance together with Kernel Density 

Estimation (KDE).  
KDE is a non-parametric technique for estimating the probability density function of a random 

variable. When applied to risk levels, it allows you to smooth the risk measurements and find areas of 

high and low risk density. The equation (Equation 1.2) provides a smoothed estimate of the risk level 
distribution. From this, you could estimate probabilities of specific risk levels, find modes of risk (most 

common risk levels), or perform other analyses based on selection of kernel function for the KDE 

(Equation 1.1). 

The Gaussian kernel is a common choice due to its smoothness and nice mathematical properties. 
K(u) is the Gaussian kernel function, which decreases with the square of the distance from the center 

of the kernel (u), and f(x) is the kernel density estimate, which is an average of the kernel functions 

centered at each data point (Xi), with the bandwidth h which controls the amount of smoothing: a large 
h leads to more smoothing and a smaller h leads to less smoothing. 

To apply this to measured risk levels, the data points (Xi) would be the measured risk levels, and the 

estimated density f(x) would give an estimate of the probability density of risk levels at each point in 

the risk range.  
Equation 1.1: The equation for a Gauss kernel 

𝐾(𝑢) =
1

√2𝜋
𝑒−

1
2

𝑢2

 

Equation 1.2: KDE equation 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑋𝑖

ℎ
)

𝑛

𝑖=1

 

After collecting the data on historical ND, we can then calculate the risk scores per disaster category 

using minimal set of crucial input parameters: 

1. Earthquakes: 
Variables: 

 Magnitude (M) of the past earthquakes. 

 Distance (d) to the epicenter of past earthquakes. 
The risk score for earthquakes can be calculated as follows: 

𝑅(𝑥, 𝑦) = ∑ 𝑀𝑖

𝑖

⋅ 𝑒
−

𝑑𝑖
2

2σ2 

2. Landslides: 
Variables: 

 Slope of the terrain (S). 

 Soil moisture content (M). 
 Distance (d) to previous landslides. 

The risk score for landslides can be calculated as follows: 

𝑅(𝑥, 𝑦) = ∑ 𝑆𝑖

𝑖

⋅ 𝑀𝑖 ⋅ 𝑒
−

𝑑𝑖
2

2σ2 

3. Flooding: 

Variables: 

 Precipitation (P) in the area. 
 Distance (d) to water bodies such as rivers or lakes. 

The risk score for flooding can be calculated as follows: 

𝑅(𝑥, 𝑦) = ∑ 𝑃𝑖

𝑖

⋅ 𝑒
−

𝑑𝑖
2

2σ2 

In these equations, σ is the standard deviation, controlling the spread of the Gaussian kernel, (x, y) are 

the coordinates for a specific grid cell in the GIS maps, R(x, y) is the calculated risk score at point (x, 

                                                             
4 The Kernel Cookbook, https://www.cs.toronto.edu/~duvenaud/cookbook/ 
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y), and the summation i is over all the relevant events or factors within a certain radius around point (x, 
y). 

2.5 Applying the minimal safe distances 

The minimal safe distance to the object (here the minimal distance to the linear part of pipeline) is a 

starting point to identify the way we calculate the offset for risk values. Minimal distance is a 

geometrical distance, a straight line. It varies from disaster factors, so let’s integrate it (Dmin) into our 
equations: 

1. Earthquakes: 

Variables: 

 Magnitude (M) of the past earthquakes. 
 Distance (d) to the epicenter of past earthquakes. 

 Minimal safe distance to the epicenter of earthquakes (Dmin). 

The risk score for earthquakes can be calculated as follows: 

E(𝑥, 𝑦) = ∑ 𝑀𝑖

𝑖

⋅ 𝑒
−

(𝑑𝑖−𝐷𝑚𝑖𝑛)2

2σ2 ⋅ 𝐻(𝑑𝑖 − 𝐷𝑚𝑖𝑛) 

Here, H (di - Dmin) is the Heaviside step function. It is equal to 0 for di < Dmin (indicating no risk 
inside the safe distance), and 1 for di >= Dmin. 

2. Landslides: 

Variables: 
 Slope of the terrain (S). 

 Soil moisture content (M). 

 Distance (d) to previous landslides. 
 Minimal safe distance to previous landslides (Dmin). 

The risk score for landslides can be calculated as follows: 

𝐿(𝑥, 𝑦) = ∑ 𝑆𝑖

𝑖

⋅ 𝑀𝑖 ⋅ 𝑒
−

(𝑑𝑖−𝐷𝑚𝑖𝑛)2

2σ2 ⋅ 𝐻(𝑑𝑖 − 𝐷𝑚𝑖𝑛) 

3. Flooding: 

Variables: 
 Precipitation (P) in the area. 

 Distance (d) to water bodies such as rivers or lakes. 

 Minimal safe distance to water bodies (Dmin). 

The risk score for flooding can be calculated as follows: 

𝐹(𝑥, 𝑦) = ∑ 𝑃𝑖

𝑖

⋅ 𝑒
−

(𝑑𝑖−𝐷𝑚𝑖𝑛)2

2σ2 ⋅ 𝐻(𝑑𝑖 − 𝐷𝑚𝑖𝑛) 

These equations will yield risk scores that are higher for locations closer to the dangerous object 

(beyond Dmin), and zero for locations within the safe distance. The more sophisticated approach is 

considering a gradual decrease of risk within the safe distance, instead of a sudden drop to zero (Section 

2.5). 
The results of evaluated risk scores (RS) of a single contributing factor for each type of disaster (e.g., 

a single earthquake, a single previous landslide, a single water body) using above equations can be 

found on Table 2: 

Table 2. Risk scores per factor, 500 meters, 5 steps 

Distance (m) Earthquake RS (M=5, σ=500) Landslide RS (S=2, M=0.5, σ=500) Flood RS (P=100, σ=500) 

200 0.891 0.577 19.2 

700 0.706 0.353 14.12 

1200 0.367 0.184 7.34 

1700 0.135 0.067 2.7 

2200 0.033 0.017 0.66 

Here, M is the earthquake magnitude, S is the terrain slope, and M is the soil moisture content for 
landslides (not to be confused with M for earthquakes). P is the precipitation level. σ is the spread of 

the Gauss kernel, which is the same for all three types of disasters. 
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The risk scores were calculated using the updated equations from the “Section 2.4”, with Dmin equal 
to 200 meters. Note that for the distance of 200 meters, the risk scores are 0 because of the safe distance 

factor. The risk scores for distances beyond Dmin were calculated by substituting the given values into 

the equations. The calculations assume a specific value for each parameter, and the actual risk scores 
may vary greatly depending on these values. 

The total risk function R(x, y) at location (x, y) would be the sum of these three functions: 

𝑅(𝑥, 𝑦) = 𝐸(𝑥, 𝑦) + 𝐿(𝑥, 𝑦) + 𝐹(𝑥, 𝑦) 
The function R(x, y) will give us a single risk score for each location (x, y) that we can visualize on a 

2D map. We can calculate this function for each cell in a 5×5 grid, and then color each cell based on its 

risk score to create a 2D risk map. This is used as a model for single cell area and actual risk maps 
would probably use a more sophisticated model and a much larger grid. 

2.6 Splitting and scaling the grid 

In multi-hazard GIS-based risk analyses, subdividing the area of interest from larger cells (Δx,  Δy) 

into smaller ones can greatly enhance the precision and interpretability of results. Each cell 𝐺𝑖, 𝑗 

represents a discrete spatial unit for modeling hazard intensity, vulnerability, and other relevant 

parameters. Adopting a finer cell size (Δ𝑥small ,  Δ𝑦small) has several advantages: 

Increased Spatial Resolution. 

Smaller grid cells capture more localized variations in elevation, land cover, infrastructure density, 

and other critical attributes. In mathematical terms, the number of cells  𝑁 in a given region of area 𝐴 

scales approximately as  𝑁 ∝
𝐴

Δ𝑥×Δ𝑦
. Hence, decreasing cell size yields a larger 𝑁, facilitating higher-

resolution risk modeling. 

Improved Risk Assessment. 

By refining each cell’s spatial dimensions, the risk matrix (or any comparable index) can more 
accurately depict local hazards. For instance, in a flood risk scenario, slight changes in elevation or land 

cover within a 2×2 km cell may significantly affect water flow and flood extent. A coarser 10×10 km 

cell (Δ𝑥large,  Δ𝑦large) would mask these localized variations, potentially underestimating or 

overestimating the actual risk. 

Localized Analysis. 

Disasters such as landslides or urban flash floods often affect small areas with disproportionately high 

severity. A finer grid enables targeted analysis of these hotspots, capturing the nuances of topography 
and land use that can influence the severity of impacts. This capability is crucial for large-scale disaster 

management strategies where local conditions can markedly change risk levels. 

Detailed Mitigation Planning. 

High-resolution grids reveal specific locations most prone to damage, supporting more efficient 

mitigation measures. Authorities can use these refined data layers to plan structural defenses (e.g., 

levees or retaining walls), allocate evacuation routes, and prioritize response resources, thereby 
reducing both immediate and long-term risk. 

Enhanced Accuracy of Predictive Models. 

Many computational models in hydrology, seismology, and other hazard-related fields use grid-based 

inputs. Smaller cell sizes often improve the fidelity of simulations, though at the cost of greater 

computational demand. By employing a grid of fine resolution, models can represent spatial 
heterogeneity more accurately, thereby yielding more reliable predictions of hazard behavior. 

However, adopting smaller cells increases the computational burden, as the total number of cells N 

and the associated data complexity grow. Additionally, finer spatial resolution demands 

correspondingly detailed data inputs (e.g., higher-accuracy digital elevation models, land use surveys). 
In practical applications, the grid cell size is often a compromise between accuracy and available 

computational or data resources. 
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Figure 3. The area of interest with 3x2 cells, each 10x10 km 

For example, Figure 3 may represent a coarser grid where each cell is approximately 10×10 km, 

capturing large-scale trends but providing only a coarse view of localized risk. Conversely, Figure 4 
might illustrate a finer grid (2×2 km cells), capturing nuanced variations yet increasing both data density 

and processing time. Calibrating grid size becomes essential for balancing computational feasibility 

with the desired level of spatial detail. In many multi-hazard pipeline risk assessments, a moderate cell 
size is often chosen initially, followed by targeted refinement in critical zones where hazards overlap 

or infrastructure vulnerability is high. This approach ensures that risk maps reflect realistic spatial 

gradients without overwhelming computational or data-storage capacities. 

 

Figure 4. The area of interest with 17x12 cells, each 2x2 km 

 2.7 Smoothing risk scores by categories 

When plotting discrete or granular risk values directly onto a map—especially when each value is 

subdivided into finer sub-scores—visual representations can appear patchy or irregular. To obtain a 
smoother, more continuous distribution of risk values across a two-dimensional space, Kernel Density 

Estimation (KDE) offers a robust solution. Under this approach, probability density functions are 

approximated for each designated risk category (e.g., Green, Yellow, Red), focusing attention on 
smaller, localized zones that require further scrutiny. 

In this study, risk values lying outside the specified range of a given category are effectively excluded 

(or treated as zero) during computation. For instance, when constructing KDE surfaces for Green-

category data, only points whose risk scores lie within the “Green” interval are included. Similarly, 
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Yellow and Red categories are handled in separate density estimations, thus preventing extraneous data 
points from skewing results. 

Mathematically, for the c-th category, where  𝑛𝑐 data points (𝑥𝑖
(𝑐)

,  𝑦𝑖
(𝑐)

) satisfy that category’s risk 

range, the two-dimensional Gaussian KDE can be written as: 

Equation 2: 2D risk score using Gauss kernel  
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Here, categorized risk levels per impact, where (𝑛𝑐) is the number of data points in the (i)th category, 

(h) is the bandwidth parameter, (e) is the base of the natural logarithm and  𝑥𝑖
(𝑐)

 and  𝑦𝑖
(𝑐)

  are the nth 

pair of 2D data points.  

This formulation assumes X and Y (the spatial coordinates) are independent variables in the Gaussian 

kernel, allowing for straightforward, radially symmetric smoothing. The choice of the bandwidth h is 
pivotal: smaller h values yield highly localized densities at the expense of potential overfitting, whereas 

larger h values give smoother distributions that may obscure important local variations. Bandwidth 

selection often leverages cross-validation or rule-of-thumb heuristics (Silverman, 2018). 
By performing this KDE procedure separately for each risk category, the method generates multiple 

“layered” density surfaces that can then be visualized independently or composited. The resulting 

smoothed risk surfaces help highlight areas of greatest concern within each category and avoid the 
abrupt color transitions that simple, cell-by-cell risk mapping might produce. Consequently, decision-

makers and analysts gain a clearer view of spatial risk concentrations, which supports more informed 

planning and more targeted mitigation strategies. 

  2.8 Data Processing 

To streamline the risk analysis within a specified Area of Interest (AIO), a systematic methodology 

was devised, as summarized in Table 3. The determination of the AIO’s minimum size - which was 
initially set at 1 km² - drew on a preliminary review of notable natural disaster events within Azerbaijan, 

ensuring that smaller-scale events would be captured. However, the AIO dimension is not fixed and 

may be recalibrated for different regions or urban areas where hazard intensity or infrastructure density 
warrants finer resolution. 

Adapting AIO dimensions typically involves additional analytical steps. First, detailed hazard datasets 

(e.g., seismic zonation maps, flood extents, or landslide susceptibility layers) are reviewed to confirm 

the spatial extent and granularity of the events. Second, the potential impact radius of each hazard is 
considered - particularly if one hazard (e.g., flooding) tends to spread over a wider area compared to 

another (e.g., localized ground subsidence). Finally, socioeconomic or administrative factors, such as 

population centers or critical infrastructure corridors, may also inform the selection of a larger or smaller 
AIO. 

Within each AIO, risk levels are determined by referencing previously established matrices for natural 

hazards (earthquakes, floods, landslides, mud volcanoes, etc.), environment-based hazards (e.g., 

corrosion), and their associated weights. The resulting risk scores are then aggregated spatially, 
allowing analysts to pinpoint critical hotspots. By adhering to the structured workflow shown in Table 

3, one ensures uniformity across different AIOs, thereby facilitating consistent comparisons - even 

when hazard profiles differ. 
Through this stepwise approach, researchers and decision-makers can maintain a clear audit trail of 

how risk scores are derived, updated, and mapped onto each AIO. This enables rapid re-evaluation if 

new hazard data emerge - such as revised seismic models or recent flood records -and fosters an 
adaptable framework suitable for a variety of planning or operational needs. 

Table 3. Processing Steps for a Single AIO 

Step Description 

1 Determine the AIO: The AIO should be centered around the pipeline to ensure accurate and proportionate GIS 
visualization of the event area and the pipeline's linear section 

2 Identify (ND) and Adjust AIO Size: Identify NDs that could impact the AIO. The AIO's dimensions may be 

modified if an ND has a wider impact area. Concurrently, determine the risk parameters for each event and their 
relative weights concerning the pipeline. 

3 Calculate Risk Matrices per Event: Develop risk matrices for each identified event, considering the specific risk 
parameters and weights. 
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4 Combine Risk Scores: Combine the individual risk scores from each event into a comprehensive risk score 
matrix. 

This methodical approach ensures a thorough and systematic assessment of risks within a given AIO, 
allowing for a nuanced understanding of potential impacts on pipeline infrastructure. 

 2.9 Aggregated Risks 

While the aggregated risk score provides a high-level view of the overall risk, it is still tied to the 
individual risk scores, and these can be used to understand the specific hazards in more detail. It's 

beneficial to consider both the aggregated and individual risk scores when planning interventions and 

communicating about risk. In terms of visualization of risk details in an aggregated form, the individual 
risk being stored as an entity within the relational database.  

Many GIS frameworks providing the automation facilities (here ArcMap, QGIS and etc.) via scripting 

languages like Python, JavaScript. So, by adding the referential output per aggregated risk value (here 
individual colored cell) we can get the detailed information on certain cell of interest in a form of table 

4 or other ways, like popup tooltips. 

Table 4: Aggregated risk score for each location 

Location Earth-quake Risk Land-slide Risk Flood Risk Mudflow Risk Aggregated Risk 

A 5.6 4.2 7.3 6.4 23.5 

B 7.1 2.3 8.5 5.6 23.5 

C 3.4 6.7 6.2 4.5 20.8 

D 6.9 4.8 8.1 5.3 25.1 

E 4.3 3.5 7.8 6.7 22.3 

This table clearly shows both the individual and aggregated risk scores. By comparing the aggregated 

scores, we can see that location D has the highest overall risk, even though it may not have the highest 

risk for any individual disaster category. This is a good example of how aggregated risk scores can 
provide a different perspective than individual risk scores. 

    2.10 KDE and risk colors 

The KDE method can be used to generate the smoothed, continuous distribution of the aggregated risk 

scores.  

In this context, it would provide a way to understand the distribution of aggregated risk scores across 

the area of interest, identifying areas of high or low risk density. This could help to inform more granular 
risk management strategies or interventions, by focusing efforts where the density of high-risk locations 

is greatest. 

 
Figure 5. Histogram of Gaussian aggregated risk score 

The Fig. 5 is a smoothed histogram (i.e., a probability density function) of the aggregated risk scores 

using a Gaussian kernel. The resulting plot shows the distribution of risk scores, with the y-axis 

representing the estimated density of each risk score.  
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This can help us to visualize how the risk scores are distributed and could potentially inform how we 
define the ranges for the 'Green', 'Yellow', and 'Red' risk rankings. 

Then, the distribution of colours on the histogram be colorized based on colour ranges per risk score. 

On the example of given aggregated values from the table “Table 4”, the risk ranking fall into ‘Red’ 
coloured risk score and be smoothed as a gradient of ‘Red’ colour.  Following the calculation of the 

probability density function using the Gaussian kernel density estimation (KDE) technique, we 

visualize the distribution by creating a color-coded histogram plot (Fig. 6). Those gradients then be used 
to map smoothed aggregated risk values on final GIS maps. 

This results in a spatial map where each location is coloured based on its normalized risk density, as 

estimated by the KDE. Darker colours indicate regions with higher risk densities. 

In practical applications, this spatial risk map can be overlaid with other geographical features such 
as roads, buildings, and natural landmarks to provide a comprehensive view of the risk landscape. This 

can aid in identifying high-risk areas and prioritizing interventions. 

 

Figure 6. Gradient histogram of Gaussian aggregated risk score 

2.11 Assessment challenges 

In the process of assessing risks to pipeline infrastructure due to natural disasters, several challenges 

arise, particularly in accurately characterizing the impact of these events. A key aspect of this challenge 
is the need for a comprehensive definition of risk, which encompasses a clear understanding of the 

probability and dimensions of potential impacts. The challenges, listed in order of increasing 

complexity, include: 
1. Identification and Evaluation of Risk Parameters: This involves pinpointing specific risk factors 

and assessing their potential impact. An example is evaluating the effects of earthquakes on 

pipelines, including subsequent NATECH events (Krausman et al., 2016). 
2. Determining Appropriate Risk Weights for Each Parameter: Assigning the correct weight to each 

risk parameter is crucial for accurate risk assessment. 

3. Choosing the Correct Granularity for the Area of Interest: This is essential to avoid 

oversimplification and ensure detailed risk analysis. 

2.12   General steps for risk visualization 

To visualize the spatial distribution of aggregated risk scores using the colorized histogram, we can 
employ a GIS framework. This allows us to map the risk scores onto a 2D map representation of the 

study area. 

a. Define the study area: Determine the extent and boundaries of the study area where the 

risk scores will be visualized. 

b. Obtain the risk scores: Collect or calculate the aggregated risk scores for each location 

within the study area. 

c. Create a grid: Divide the study area into a regular grid of cells. The size of each cell 

depends on the desired resolution for the visualization. 
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d. Interpolate the risk scores: Assign each cell in the grid a risk score based on interpolation 

techniques such as inverse distance weighting or kriging. This step ensures that risk scores 

are assigned to locations that fall between the actual data points. 

e. Colorize the grid: Assign a color to each cell based on its risk score. Use a color scale or 

colormap that represents the risk levels of interest. For example, a colormap with shades of 

red can be used, where lighter shades represent lower risk and darker shades represent 

higher risk. 

f.Generate the risk map: Plot the colored grid onto the GIS map, overlaying it on relevant base 

layers such as roads, topography, or satellite imagery. This provides spatial context and 

aids in the interpretation of the risk distribution. 

g. Include a legend: Create a legend that clearly explains the color scale and risk levels 

associated with each color. This helps viewers interpret the risk map accurately. 

h. Optional: Add additional features: To enhance the visualization, you can incorporate other 

geographical features such as administrative boundaries, water bodies, or infrastructure that 

may be relevant to the risk assessment. 

By following these steps, the colorized histogram-based visualization of aggregated risk scores 
can be extended to a GIS environment, allowing for a comprehensive and visually appealing 

representation of spatial risk distribution. 

Results 

The outcome of this study includes the successful implementation of GIS tools to create detailed 

visualizations of aggregated risk. A significant enhancement in our visualization technique was the 

incorporation of buffered zones along the pipeline route, which provided a more distinct delineation of 
risk areas (Petersen, 2020).  

The series of figures, from Fig. 7 to Fig. 10, illustrate the progression of refined combined risk scores 

(CRS) derived from various natural hazards within a relatively small region. The smallest unit of 
analysis, the AIO, covered approximately 2 km², while the entire region under assessment spanned 

about 100 km². The risk matrices developed were informed by a combination of data on recorded 

earthquakes, identified geological faults, and mud volcanoes.  
The tools utilized for these visualizations were ESRI ArcMap 10.8 for mapping, output files generated 

(CSV files) with Python 3.8. 

Discussions 

In this study, we have navigated through the multifaceted challenges of assessing the risk to pipeline 

infrastructure from natural disasters. Our approach has been to meticulously identify and evaluate risk 

parameters, determine appropriate risk weights, and select the optimal granularity for the area of 
interest.  

Implications of Findings: Our findings underscore the complexity inherent in assessing natural 

disaster risks to pipelines. The use of a three-dimensional risk assessment plot, as demonstrated in 
Figure 7 for earthquake impacts, provides a nuanced visualization of risk. This method allows for a 

more detailed understanding of how different risk parameters interact and affect the overall risk profile. 

Figure 7-8. Coarse, CRS (left), KDE based, refined CRS (right) 
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The color-coded risk categories further enhance the interpretability of these risks, making the data more 

accessible for decision-makers. 
The application of this methodology to other natural disasters reveals its versatility. However, it also 

highlights the increasing complexity when more parameters are involved. Each additional parameter 

requires careful consideration and integration into the overall model, underscoring the need for a robust 
and flexible risk assessment framework. 

Challenges and Limitations: One of the primary challenges encountered in this study is the sensitivity 

of the KDE and color mapping to the choice of parameters, especially the bandwidth h. The selection 

of h is critical and must be tailored to the specific characteristics of the data and the objectives of the 
risk assessment. This sensitivity points to a broader challenge in risk assessment: the balance between 

accuracy and generalizability. 

Furthermore, our approach assumes the independence of risk factors, which may not always hold true 
in real-world scenarios.  

Future Directions: Looking ahead, there are several avenues for further research. First, exploring 

methods to incorporate the interdependencies between different risk factors would likely yield a more 
comprehensive and realistic risk assessment model. This could involve the development of more 

sophisticated statistical models or machine learning algorithms capable of handling complex, 

interrelated datasets. 

Second, the adaptation of our model to a wider range of natural disasters would be beneficial. Each 
type of disaster brings its unique set of challenges and risk factors, and a versatile, adaptable model is 

essential for broad applicability. 

Lastly, engaging with experts in geology, meteorology, and disaster management could provide 
valuable insights and data, enriching the model's accuracy and relevance. 

Conclusion 

This study has illuminated several key challenges in determining risk weights, which are crucial for 

accurate risk assessment in the context of ND and their impact on infrastructure. These challenges are 

summarized below: 

1. Complexity of Risk Interactions: ND often triggers or coincides with other events, complicating 
the assessment of combined risk impacts. Example: An earthquake increasing the likelihood of a 

landslide. 

2. Data Scarcity: The lack of sufficient data for rare or unprecedented risks introduces significant 
uncertainty in estimating probabilities and impacts. 

3. Risk of Oversimplification: Simplifying risk assessments can lead to underestimating the 

complexity and interactions of risks, potentially skewing the actual risk levels. 

4. Model Dependence: The accuracy of risk weights is directly linked to the efficacy of the risk 
assessment model. Inaccurate models can result in misleading risk weights. 

5. Subjectivity in Risk Weighting: Risk assessments can be influenced by individual or organizational 

risk tolerance, which varies widely. Balanced risk weighting often requires collective input from 
professionals or subject matter experts. 

6. Evolving Risk Landscape: Risks change over time due to environmental, technological, 

regulatory, and other factors, necessitating regular updates to risk weights. 
7. Perception Bias: Decision-makers' biases in risk perception can lead to overestimating or 

underestimating certain risks, influenced by factors like visibility, recency, or familiarity. 

Figure 9-10. KDE based, smaller scale CRS (left), KDE based, fine-tuned CRS (right) 
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8. Quantifying Qualitative Risks: Some risks are qualitative and difficult to quantify, such as 
reputational risks or the impact of regulatory changes, posing challenges in numerical risk 

weighting. 

  Advantages 

The utilization of aggregated risk scores in assessing various types of risks offers several advantages, 

as outlined below: 
1. Simplicity in Visualization and Interpretation: Aggregated risk scores streamline the process of 

understanding risks by condensing multiple risk factors into a single, comprehensive score. This 

simplification aids in easier interpretation and visualization. 

2. Enhanced Comparability: These scores enable straightforward comparisons of overall risk 
across different locations or regions, which is invaluable for decision-makers in resource 

allocation and prioritization. 

3. Holistic Risk Understanding: Aggregated scores offer a broad overview of risk, capturing the 
cumulative effect of individual risks, especially when they interact or compound. 

4. Effective Communication: Communicating a single aggregated risk score is often more 

straightforward and accessible to stakeholders and the public than explaining multiple individual 
risk components. 

Furthermore, the aggregated risk score can be tailored to align with the risk tolerance or appetite of 

the concerned entity. This adaptability allows for a more relevant and targeted risk assessment. 

Using a risk matrix for aggregation effectively consolidates risks from various natural disasters into a 
single value. This comprehensive view is crucial for effective risk management, disaster preparedness, 

and resource allocation. However, it's essential to periodically update the risk matrix to reflect changes 

in the risk landscape due to factors like climate change, urban development, and population growth. 
It's also important to recognize that the aggregated risk score is an indicative tool meant to guide, but 

not solely dictate, decision-making processes. Factors such as societal values, financial constraints, and 

political considerations should also be factored into risk management strategies. 

Despite the challenges, our study successfully visualized risk in an aggregated form, using a single 
map with finely tuned risk scores. Regular review and updating of risk weights, expert involvement, 

and careful consideration of risk interactions are key components of this approach. 

One notable finding is the model's applicability to other risk assessments using the same matrix 
representation and weight calculations. The flexibility of the model is further enhanced by the potential 

integration of the Kernel Density Estimation (KDE) method for fine-tuning outputs and the 

implementation of algorithms like the Moore neighborhood (Ilachinski et al., 2001) for relative AIO 
region risk score determination. 
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