

ფირცხელანი ნ., ყოჩიაშვილი ნ., ფარლალავა ნ.,
მახალდანი ლ., ქართველიშვილი ქ.

ჩართულ აოაულაციაში გემავიდრული თრომბოფილის საინტერესო შემთხვევაში

ლევან სამხარაულის სახელმგების სასამართლო
ერთაშორისობის ეროვნული პიროვნეული ნ. პოხუას
სახელმგების საქართველოს აგილილოგისა და
სისხლძარღვისა ჩირულის ცენტრი; თსსუ,
მოლევულური და სამადიცონ განეთიკის
დეპარტამენტი

მიუხედავად თანამედროვე მედიცინის მნიშვნელოვანი მიღწევებისა, თრომბოზი და მასთან დაკავშირებული გართულებები გლობალური მედიკო-სოციალური პრობლემაა. ამ პრობლემისადმი უდიდესი ინტერესი, პირველ რიგში, აიხსნება მისი დიდი კლინიკური მნიშვნელობით, რადგან თრომბოზი და მასთან დაკავშირებული გართულებები სიკვდილიანობისა და ინვალიდიზაციის ძირითადი მიზეზია მთელ მსოფლიოში. დღეისათვის უკვე დადგენილია ღრმა ვენების თრომბოზის განვითარების მრავალი რისკის ფაქტორი. მათ შორის მნიშვნელოვანი ადგილი უკავია თრომბოფილის ფენომენს. ტერმინი „თრომბოფილია“ აღნიშნავს ინდივიდის მიღრეკილებას თრომბოზებისადმი, რომელიც გამოწვეულია ჰემოსტაზის სისტემის პირველადი (გენეტიკური) ან მეორადი (სიმპტომური ანუ შეძნილი) დარღვევებით. თრომბოზის ყველაზე ხშირ გენეტიკურ რისკის ფაქტორს წარმოადგენს სისხლის შედედების II(20210 G/A) და V (1691 G/A) პლაზმური ფაქტორებისა და ჰომოცისტეინის მეტაბოლიზმში მონაწილე ფერმენტის, მეთილენტეტრაჰიდოროფოლატ რედუქტაზას (MTHFR) მაკოდიორებელი გენის წერტილოვანი მუტაციები, რაც მრავალი კვლევით არის დადასტურებული [2][11][14]. საქართველოში, ზემოთ აღნიშნული პრობლემა, კიდევ უფრო მნიშვნელოვანი და ტაქტიკას საჭიროებს. უკანასკნელი 20 წლის განმავლობაში, გენეტიკურად დეტერმინებული თრომბოფილისადმი ინტერესი მსოფლიოში მნიშვნელოვანდ გაიზარდა, რაც ჰემოსტაზის ინტერესი დიდი მიღწევებით (ამ სფეროში მოღეკულურ-გენეტიკური კვლევების დანერგვა) და თრომბოფილის შემთხვევების გახშირებით არის განაპირობებული. რევოლუცია ამ სფეროში მოხდა მას შემდეგ, რაც სულ რაღაც თხუთმეტიოდე წლის წინ, აღმოჩენილ იქნა სისხლის შემადედებელი II (პროთორომბინი) და V პლაზმური ფაქტორების (პროაქსელერინი) და ჰომოცისტეინის მეტაბოლიზმში მონაწილე ფერმენტის მეთილენტეტრაჰიდროფოლატ რედუქტაზას (MTHFR) მაკოდიორებელი გენების წერტილოვანი მუტაციები (პროთორომბინი - 20210G/A; FVleideni - 1691G/A და MTHFR - 677C/T)[9].

მემკვიდრული თრომბოფილია, რომელიც განპირობებულია ზემოთ აღნიშნული გენების მუტაციებით, ხშირად დაკავშირებულია არა მარტო თრომბოზულ გართულებებთან, არამედ ორსულთა სხვადასხ-

ვა პათოლოგიების განვითარებასთან. თავად ორსულობა, თრომბოზული გართულებების რისკის ფაქტორია, რადგან ამ პერიოდში სისხლის შემადედებელ და ფიბრინოლიზის პლაზმურ სისტემაში ვითარდება ცვლილებები, რაც, განსაკუთრებით ორსულობის III ტრიმესტრში, გამოიხატება სისხლის პროკოაგულანტური პოტენციალის გაზრდით. გამომდინარე იქიდან, რომ იმპლანტაციის პროცესი, ტროფობლასტის ინვაზია და პლაცენტის შემდგომი ფუნქციობა დამოკიდებულია პროკოაგულანტური და ანტიკოაგულანტური მექანიზმების ბალანსირებულ ურთიერთქმედებაზე, მექანიდრული თრომბოფილის არსებობისას, განსაკუთრებით კი FV ლეიდენის მუტაციის მქონე პაციენტებში, ობიექტურად მატულობს პლაცენტაში სისხლძარღვოვანი გართულებების განვითარების რისკი [5][12], რაც ორსულთა ისეთი პათოლოგიების განვითარების მიზეზი შეიძლება გახდეს, როგორებიცაა: სპონტანური აბორტი, მკვდრადშობადობა, პლაცენტის ნაადრევი აშრევება, ნაყოფის განვითარების შეფერხება, პრეეკლამფისა, HELLP სინდრომი და ა.შ. [3][13]. სტატისტიკური მონაცემების საფუძველზე შეიძლება ჩაითვალოს, რომ თრომბოებმბოლიზმი ორსულებმი სიკვდილიანობის ერთ-ერთი ძირითადი მიზეზია [4][6].

ზემოთ თქმულიდან გამომდინარე, მემკვიდრული თრომბოფილია, შესაძლებელია, განხილულ იქნას, როგორც თრომბოზებისადა ორსულთა პათოლოგიების განვითარების დამოუკიდებელი რისკის ფაქტორი.

პოპულაციისათვის სპეციფიკური მუტაციების იდენტიფიკაციის მიზნით, ბევრ ქვეყანაში მიმდინარეობს გენეტიკური კვლევები, რომელთა შედეგებზე დაყრდნობით გაირკვა, რომ სხვადასხვა პოპულაციებში, ზემოთ აღნიშნული მუტაციების გავრცელების საშუალო მაჩვენებელი განსხვავებულია. მაგალითად: FV ლეიდენის (1691G/A) მუტაციის გავრცელების სიხშირე ევროპისა და ამერიკის საერთო პოპულაციაში 3%-დან 7%-მდე მერყეობს, ზოგან კი 15%-ს აღწევს [7], თურქეთში - 9%-ს [8], თუმცა, აფრიკისა და აზიის ქვეყნებში მუტაციის შემთხვევები პრაქტიკულად არ გახვდება [15]. ასევე განსხვავდება 20210G/A და MTHFR გენის 677C/T მუტაციების გავრცელების საშუალო მაჩვენებელი სხვადასხვა პოპულაციებში [1].

საქართველოში მემკვიდრულ თრომბოფილიაზე და თრომბოზის პათოგენეზში მის როლზე ძალიან მცირე ინფორმაცია მოიპოვება, რადგან ჩვენს ქვეყანაში ამ მუტაციების კვლევა არ ხდებოდა, რაც გამოწვეული იყო კვლევებისათვის საჭრო თანამედროვე, მაღალტექნოლოგიური გენეტიკური ლაბორატორიისა და კვალიფიციური კადრის არარსებობით. აქედან გამომდინარე, დღეისათვის ნაკლებადაა შესწავლილი აღნიშნული მუტაციების გავრცელების სიხშირე და, შესაბამისად, მათი როლი ქართულ პოპულაციაში თრომბოებმბოლიზმისა და ორსულთა პათოლოგიის პათოგენეზში.

მასალა და მეთოდები

პაციენტებს, მემკვიდრული თრომბოფილის დასადგენად ჩატარდათ გენეტიკური კვლევა, რაც გულისხმობდა, საკვლევ პირებში სისხლის შედედების V ფაქტორის გენის G1691A, პროთორომბინის გე-

ნის G20210A და MTHFR გენის C677T მუტაციების დეტექციას მოლეკულურ-გენეტიკური კვლევის უახლესი მეთოდებით. საკვლევი პირებისაგან, ანამნეზის შეკრებისა და ინფორმირებული თანხმობის (informed consent) მიღების შემდეგ, გენეტიკური კვლევები-სათვის გამოყენებულ იქნა პოლიმერაზული ჯაჭვური რეაქციისა (PCR) და პრაიმერების ერთნულებული დაგრძელების ფერმენტული იმუნოსორბენტული ანალიზის (ELISA) მეთოდები [10].

კვლევის შედეგები და განხილვა

გენეტიკური კვლევის შედეგად, მემკვიდრულ თრომბოფილიასთან შიმართებაში, განსაკუთრებით საინტერესო და საგულისხმო ალმოჩნდა ორი შემთხვევა:

პაციენტმა ი.ბ., 24 წლის, 2011 წლის 24 მარტს, მიმართა ნ.ბოხუას სახელობის საქართველოს ანგიოლოგისა და სისხლძარღვთა ქირურგის კლინიკას, ჩივილებით: მარცხენა ტერფისა და წვივის მიდამოს ტკივილი და შეშუპება, რამაც, თავის მხრივ, გამოიწვია მოძრაობის შეზღუდვა. ალნიშნული მოვლენები პაციენტს დაეწყო ექიმთან ვიზიტამდე ორი კვირით ადრე, მცირე ფიზიკური დატვირთვის შემდეგ. განვლილ პერიოდში ექიმისათვის არ მიუმართავს და ლებულობდა მხოლოდ არაპორმონულ ანთების საწინააღმდეგო ტკივილგამაყუჩებელ საშუალებებს. მიუხედავად იმისა, რომ შეშუპებამ შედარებით იკლო, ტკივილის ინტენსივობის შემცირება არ მოხდა. ანამნეზში გადატანილი დავადებიდან აღნიშნავდა მხოლოდ ბავშვთა ინფექციებს, ეწეოდა აქტიურ ცხოვრებას, დაავადების დაწყებას ვერაფერს უკავშირებდა.

ობიექტურად: სპორტული აღნაგობის, კანი და ხილული ლორნოვანი გარდისფერი. მარცხენა წვივი, კონტრლატერალურთან შედარებით, მკვეთრად შესიებული-სხვაობა 5 სმ. შეხებით, წვივის კუნთები დაჭიმული, მკვრივი, პალპაციით მტკივნეული, ჰომანსის სიმპტომი დადებითი, მგრძნობელობა შენახული, პულსაცია ყველა დონეზე კარგად ისინჯება.

ჩატარებული გამოკვლევებიდან აღსანიშნავია ქვემო კიდურების ვენური სისტემის ექიდუპლექსასანირება, რომლის დროსაც ალინიშნა მარცხენა მუხლევება და დიდი საჩინო ვენის წვივის სეგმენტის თრომბოზი. ღრმა ვენურ სისტემაში მოფლოტირე თრომბი ნანახი არ იქნა. ჰემოსტაზის მონაცემების შესწავლის შემდეგ, პაციენტს ამბულატორიულ პირობებში დაენიშნა მკურნალობა: 1. სამკურნალო ტრიკორტაუ (მაღალი წინდა — გოლფი) III კლასი; 2. დეტრალექსი — არსებული რეკომენდაციის მიხედვით და დაავადების ხანგრძლივობიდან გამომდინარე, ვიტამინ K-ს ანტაგონისტი — ვარფარინი, საწყისი დოზა 5 მგ, დღეში ერთხელ (დოზის შემდგომი კორექციით INR2-3-ის ფარგლებში).

თრომბოზის გამომწვევი მიზეზის დასადგენად, პირველ რიგში, გადაწყდა პაციენტის გამოკვლევა მემკვიდრულ თრომბოფილიაზე, კერძოდ, ჩატარდა გენეტიკური კვლევა პროთორომბინის გენის G20210A, ლეიიდენის V ფაქტორის (FVL) G1691A და პომოცისტენის მეტაბოლიზმში მონაწილე ფერმენტის მეთილენტრაპიდროფოლატ-რეალუქტაზას (MTHFR) გენის C677 T მუტაციების არსებობის დასადგნად.

გენეტიკური კვლევის შედეგად დადგინდა, რომ-პაციენტი ი.ბ., 24 წლის, 1. პროთორომბინის გენის G20210A მუტაციის მიხედვით, ნორმალური გენოტიპის მტარებელია (wt/mut), რაც იმას ნიშნავს, რომ ერთ-ერთ ჰომოლოგიურ ქრომოსომაზე აქვს ველური ტიპის (wild type), მეორეზე — G1691A მუტაციის შემცველი ალელური გენი (mut); 3. MTHFR გენის C677T მუტაციის მიხედვით, ჰომოზიგოტური გენოტიპის მტარებელია, რაც იმას ნიშნავს, რომ ორთვე ჰომოლოგიურ ქრომოსომაზე დაუდგინდა C677T მუტაციის შემცველი ალელური გენების არსებობა (mut/mut).

მიღებული ინფორმაციის შემდეგ, რაოდენობრივად იქნა განსაზღვრული სისხლში ჰომოცისტეინი, რომლის მონაცემები აღმოჩნდა ძალიან მაღალი — 62.9 მომი/ლ (ნორმა < 9 მომი/ლ — ზე), რამაც საშუალება მოგვცა მნიშვნელოვანი კორექცია შეგვეტანა დანიშნულებაში — მკურნალობას დაემატა ფოლიუმის მუავა (2 მგ) და ვიტამინები B6 და B12 (25 მგ და 500 მკგ შესაბამისად), დღეში ერთხელ.

ზემოთ აღნიშნულმა კვლევებმა მოგვცა საშუალება არამარტო დაგვედგინა თრომბოზის გამომწვევევი მიზეზი და შეგვერჩია ადეკვატური მკურნალობის სქემა, არამედ თავიდან აგვეცილებინა პროცესის პროგრესირება, თრომბოზის განმეორებითი ეპიზოდები და, აქედან გამომდინარე, სიცოცხლისათვის საშიში შესაძლო გართულებები.

პაციენტმა ი.ფ., 44 წლის, 2010 წლის 2 ნოემბერს მიმართა ნ. ბოხუას სახელობის საქართველოს ანგიოლოგისა და სისხლძარღვთა ქირურგის კლინიკას, ჩივილით მარცხენა ქვემო კიდურის შეშუპებაზე.

ანამნეზით, პაციენტს 4 წლის წინ, მე-13 კვირის ორსულობის ვადაში, განუვითარდა მარცხენა მუხლევება-ბარძაყ-თეძოს (გარეთა) ვენური სეგმენტის თრომბოზი. პაციენტს დროულად დაეწყო ანტიკოაგულაციური თერაპია დაბალმოლექულური ჰეპარინით. მიუხედავად ამისა, 28 კვირის ვადაზე, დაფიქსირდა ნაყოფის სიკვდილი, რომლის მიზეზად ჩაითვალა პლაცების თრომბოზი. აღსანიშნავია, რომ ეს იყო პაციენტის მე-10 ორსულობა და მანამდე არსებული ყველა ორსულობა, სხვადასხვა ვადაში, დამთავრდა თვითნებური აბორტით. ორსულობის შეწყვეტის შემდეგ, პაციენტი გამოკვლეულ იქნა მემკვიდრულ თრომბოფილიაზე. ლაბორატორიულად ჩატარებულ ყველა გამოკვლევაზე (ანტიკარდიოლიპინური ანტისევულები G და M, პროტეინ C — ისა და პროტეინ S — ის აქტივობა, აქტივირებული პროტეინ C-სადმი რეზისტენტობა, ანტიტორმბინ III-ის აქტივობა და სხვა) მიღებული იქნა უარყოფითი პასუხი. მთელი განვლილი პერიოდის განმავლობაში, პაციენტი მკურნალობას აგრძელებდა ვიტამინ K — ს ანტაგონისტით, რეციდივებს ადგილი არ ჰქონია. დუპლექსს-კანირებით აღინიშნა დაზიანებულ ვენურ სეგმენტ 80%-მდე რეკანალიზაციის. პაციენტის გრადული ფერმენტის გაზრდაში ერთხელ გამოკვლევის ჩატარება, გენეტიკური ფაქტორების, კერძოდ, მემკვიდრული თრომბოფილი გამორიცხვის მიზნით. თანხმობის მიღების შემდეგ,

პაციენტს ჩაუტარდა გენეტიკური გამოკვლევა პრო-თრომბინის გენის G20210A, ლეიიდენის V ფაქტორის (FVL) G1691A და მეთილენტეტრაჰიდროფოლატ-რედუქტაზას (MTHFR) გენის C677T მუტაციების არსებობის დასადგენად.

გენეტიკური კვლევის შედეგად დადგინდა, რომ პაციენტი ი.ვ., 44 წლის, 1. პროთრომბინის გენის G 20210A მუტაციის მიხედვით, ჰეტეროზიგოტური გენოტიპის მტარებელია (wt/mut), რაც იმას ნიშნავს, რომ ერთ-ერთ ჰომოლოგიურ ქრომოსომაზე აქვს ველური ტიპის (wild type), მეორეზე – G20210A მუტაციის შემცველი ალელური გენი (მუტ). 2. ლეიიდენის V ფაქტორის G1691A მუტაციის მიხედვით, ნორმალური გენოტიპის მტარებელია; 3. MTHFR გენის C677T მუტაციის მიხედვით, ნორმალური გენოტიპის მტარებელია.

ჩარატებული გენეტიკური გამოკვლევების შემდეგ, ნათელი გახდა, თუ რა იყო თრომბოზის განვითარებისა და ორსულობების შეწყვეტის მიზეზი. პაციენტმა მიიღო რჩევა, დაეგეგმა ორსულობა ასაკობრივი რისკის გათვალისწინებით.

ჩატარებულმა გენეტიკურმა კვლევებმა საშუალება მოგვცა, არამარტო დაგვედგინა თრომბოზისა და თვითნებური აბორტების მიზეზი, არამედ გაგვესაზღვრა შემდომი მკურნალობის სწორი სქემა, რაც გულისხმობს ვიტამინ K-ს ანტაგონისტის ხანგრძლივი (მუდმივად) დროით მიღებას.

მიღებული შედეგების საფუძველზე, შეგვიძლია დავასკვნათ, რომ შესწავლილი მუტაციები მნიშვნელოვან როლს თამაშობენ თრომბოემბოლიზმისა და ორსულთა პათოლოგიების განვითარებაში ქართულ პოპულაციაში. თუმცა, საბოლოო დასკვნების გაკეთება შესაძლებელი გახდება მხოლოდ ფართო-მასშტაბიანი კვლევის განხორციელების შემთხვევაში, რაც გულისხმობს, აღნიშნული მუტაციების გავრცელების სიხშირის შესწავლას ქართული პოპულაციის საკონტროლო და საკვლევი ჯგუფების ინდივიდებში და მათი როლის განსაზღვრას პირველადი და განმეორებითი თრომბოემბოლიზმის პათოგენეზსა და ორსულთა პათოლოგიების განვითარებაში.

სწორედ იმის გათვალისწინებით, რომ მემკვიდრული თრომბოფილია მულტიფაქტორული მემკვიდრეობით ხასიათდება, ანუ თრომბოზული მდგომარეობის განვითარებაში ერთდროულად მონაბილეობენ როგორც გენეტიკური, ასევე გარემო ფაქტორები, ძალზედ მნიშვნელოვანი და აუცილებელია, ჩვენს ქვეყანაშიც პრინციპულად შეიცვალოს აღნიშნული საკითხისადმი შიდგომა და განისაზღვროს თრომბოზის პათოგენეზში გენეტიკური წინასწარგანწყობის დიდი როლი, სამედიცინო პრაქტიკაში ფართოდ დაინერგოს ზემოთ აღნიშნული მუტაციების დეტექციის მოლეკულურ-გენეტიკური კვლევები, რაც უდიდესი წინ გადადგმული ნაბიჯი იქნება მემკვიდრული თრომბოფილის ადრეული დიაგნოსტიკის, დაავადების განვითარების პრევენციისა და მკურნალობის კუთხით და საგრძნობლად შეამცირებს თრომბოზის შემთხვევებს, მემკვიდრული თრომბოფილით განპირობებულ ორსულთა პათოლოგიებსა და თრომბოზული გართულებებით გამოწვეულ უეცარ სიკვდილიანობას.

ლიტერატურა:

1. Cumming A.M., Keeney S., Salden A., et al. The prothrombin gene G.20210A variant: prevalence in a UK anti-coagulant clinic population// Br J Haematol.- 1997.-N98.-pp. 353-355.
2. den Heijer M., Blom H.J., Gerrits W.B., et al. Is hyperhomocysteinaemia a risk factor for recurrent venous thrombosis??// Lancet.- 1995.-N345.-pp.882-885.
3. Duahl A.J., Paidas M.J., Ural S.H., et al. Antithrombotic therapy and pregnancy: consensus report and recommendations for prevention and treatment of venous thromboembolism and adverse pregnancy outcome// Am J. ObstetGynecol.- 2007.-N.197(5).-pp.1-21.
4. Greer I.A. Thrombophilia: implications for pregnancy outcome// Thrombosis research.- 2003.- N.109(2-3).-pp.73-81.
5. Kovalevsky G., Gracia C.R., Berlin J.A., et al. Evaluation of the association between hereditary thrombophilias and recurrent pregnancy loss: a meta-analysis// Archives of internal medicine.- 2004.-N.164(5).-pp.558-563.
6. Kutteh W.H., Triplett D.A. Thrombophilias and recurrent pregnancy loss// Seminars in reproductive medicine.- 2006.-N.24(1).-pp.54-66.
7. Middeldorp S., Meinardi J.R., Koopman M.W., et al. A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism// Ann Intern Med.- 2001.-N.135.-pp.322-327.
8. Ozbek U., Tsangun Y. Frequency of factor V Leiden in Turkey//Int J Hematol.-1996.-N.64.-pp.291-292.
9. Pirtskhelani N., Kochiashvili N., Makhaldiani L., Pargalava N., Gaprindashvili E., Kartvelishvili K. Impact of inherited thrombophilia on the risk of recurrent venous thromboembolism onset in georgian population//Georgian Med News.- 2014 Feb. N.2 (227)- pp.93-97.
10. Pirtskhelani N, Kochiashvili N, Makhaldiani L, Pargalava N, Gaprindashvili E, Kartvelishvili K. The role of point mutations in the genes, predisposing inherited thrombophilia in the pathogeneses of proximal and distal deep vein thrombosis in georgian population// Georgian Med News.- 2014 Feb. N.2 (227)-pp.98-102.
11. Poort S.R., Rosendaal F.R., Reitsma P.H., Bertina R.M. A common genetic variant in the 39 untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in thrombosis// Blood.- 1996.-N.88.-pp.3698-3703.
12. Rey E., Kahn S.R., David M., Shrier I. Thrombophilic disorders and fetal loss: a meta-analysis// Lancet.- 2003.-N.361.-pp.901-908.
13. Robertson L., Wu O., Langhorne P., Twaddle S., Clark P, et al. The thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) Study: a systematic review// Br J Haematol.- 2006.-N.132.-pp.171–96.
14. Rosendaal F.R., Koster T., Vansenbroucke J., Reitema P.H. High risk of thrombosis in patients homozygous for factor V Leiden (Activated protein C resistance)// Blood.- 1995.-N.85.- pp. 1504-1508.
15. Thanawut S., Sirivatanauksorn Y., Limwongs C. Factor V Leiden and Prothrombin Gene Mutation in Deep Vein Thrombosis// The THAI Journal of Surgery.-2006. - N.27.-pp.11-14.

Pirtskhelani N., Kochiashvili N., Makhaldiani L.,
Pargalava N., Kartvelishvili K.

INTERESTING CASES OF INHERITED THROMBOPHILIA IN GEORGIAN POPULATION

LEVAN SAMKHALAULI NATIONAL FORENSICS BUREAU/
FORENSIC BIOLOGY (DNA) DEPARTMENT; GEORGIAN
CENTRE OF ANGIOLOGY AND VASCULAR SURGERY; TSMU,
DEPARTMENT OF MOLECULAR AND MEDICAL GENETIC

Inherited thrombophilia is a genetic predisposition to thrombosis of an individual, caused by mutations in different genes. It is often associated not only with thromboembolism, but also with pregnancy complications. For the identification of inherited thrombophilia, we have studied mutations of the blood coagulation factor V gene (G1691A), prothrombin gene (G20210A) and MTHFR gene (C677T) by the modern methods of molecular-genetic study. Polymerase Chain Reaction (PCR) and Single Nucleotide Primer Extension Enzyme-Linked Immunosorbent Assay (ELISA) were used for genetic studies. In respect to thrombophilia, from examined patients, two cases were found particularly interesting and significant, where as a result of genetic research, patients were diagnosed as carriers of the mentioned mutations. This allowed us not only to identify the causes of thrombosis and select adequate treatment, but also to prevent recurrent episodes of thrombosis and possible development of related life-threatening complications.

სამიერო კაფებისათვე

ლვინერია ი., ჟურული მ., სააკაძე ვ., ონიანი თ.,
კვერცხსილაძე რ.

**ძიმიური ნივთიერების კლასიფიკაციის,
ეთიკეთირებისა და გენურის გლობალური
კარმონიზაციული სისტემის (GHS/CLP)
ტოქსიკოლოგიური ასაეპტები და
საკარიველობი გამოყენების
შესაძლებლობა**

თსსუ, გარემოს ჯანმრთელობისა და პროფესიული
მოღიცელის მიმართულება; ნ. მაცვილაძის სახელობის
მრავის მაღიცელისა და ეკონომიკის ს/კ ინსტიტუტი

ქიმიური პროდუქციის სწრაფმა ზრდამ უკანასკნელი ათწლეულების განმავლობაში მკვეთრად გაზიარდა მისი მიმოქცევა გლობალურ ბაზარზე, რითაც საფრთხე შეუქმნა ყველა იმ ქვეყანას, რომელ-საც არა აქვს სათანადო რეგულაცია ქიმიური უსაფრთხოების სფეროში თავისი მოსახლეობის დასცავად. ქიმიური დაბინძურების საფრთხე დიდია [6,8]. იგი ეხება ყველა ცოცხალ არსებას, მათ შორის ადამიანს, რამეთუ შედეგად ე.წ. „გენეტიკური ტერიტორი“, დემოგრაფიული სირთულეების სახით, საშიშროებას უქმნის არა მარტო არსებულ მოსახლეობას, არამედ მომავალ თაობასაც [5,7].

ქიმიური ნივთიერებების საშიში თვისებების შესახებ ინფორმაციის გასავრცელებლად გასულ საუკუნეში, ქიმიური ნივთიერებების უსაფრთხო ნარმოების, გადაზიდვის, მიმოქცევის და უტი-

ლიზაციისათვის, ბევრმა ქვეყანამ, მათ შორის საქართველომ, შეიმუშავა ქიმიკატების კლასიფიცირებისა და მარკირების საკუთარი სისტემები. ეს სისტემები ხასიათდებოდნენ ლოკალური დანიშნულებით და, ძირითადად, ვერ თავსდებოდნენ სხვა ქვეყნის სისტემებთან.

საქართველოში ქიმიური უსაფრთხოების მიმართულებით ქიმიური ნივთიერებების საშიშროების შეფასებისა და პროდუქციის ნიშანდების პროცესი რეგულირდებოდა საქართველოს კანონით „საშიში ქიმიური ნივთიერებების შესახებ, 1998“ [1] და ორი დებულებით:

ა). „საშიში ქიმიური ნივთიერებების კლასიფიკაციის შესახებ“, 2003 [2];

ბ). „საშიში ქიმიური ნივთიერებების ნიშანდებისა და ეტიკეტირების შესახებ“, 2003 [3].

2011 წლს მიღებული კანონის „ტექნიკური საფრთხის კონტროლის შესახებ“ [4] ამოქმედებისთანავე ძალადაცარგულად გამოცხადდა კანონი „საშიში ქიმიური ნივთიერებების შესახებ“ და, შესაბამისად, მისგან გამომდინარე ზემოაღნიშნული დებულებებიც. ამრიგად, საჭირო გახდა ქიმიური უსაფრთხოების რეგულირების საკითხების ხელახალი გადახედვა და საერთაშორისო რეგულაციებთან მისადაგება.

ევროკავშირთან ასოცირებული ხელშეკრულების ხელმოწერის თანხმად, საქართველომ აიღო ვალდებულება, შესაბამისობაში მოიყვანოს საქართველოს კანონმდებლობა ევროპის კანონმდებლობასთან. მათ შორის ერთ-ერთი მნიშვნელოვანია ქიმიური ნივთიერებების საშიშროების ეროვნული კლასიფიკაციის მისადაგება ევროკავშირის კლასიფიკაციასთან.

წინამდებარე სტატია ეძღვნება ქიმიური ნივთიერებების კლასიფიკაციის, ეტიკეტირებისა და შეფუთვის გლობალური ჰარმონიზებული სისტემის (GHS/CLP) ტოქსიკოლოგიური ასპექტების გაშუქებას და საქართველოში გამოყენების პერსპექტივს.

2009 წლის იანვრიდან ძალაში შევიდა გაერთიანებული ერების ორგანიზაციის გლობალურ ჰარმონიზებულ სისტემაზე (GHS)¹ დაფუძნებული ევროპული რეგულაცია (EC) No 1272/2008 „ქიმიური ნივთიერებების და ნარევების კლასიფიკაცია, ეტიკეტირება და შეფუთვა“ (მოიხსენიება, როგორც „CLP²“ რეგულაცია) [9]. 2010 წლის 1 დეკემბრიდან CLP რეგულაცია გამოიყენება ქიმიური ნივთიერებების საშიშროების კლასიფიკაციისათვის, ხოლო 2015 წლის 1 ივნისიდან ამ რეგულაციის მიხედვით უნდა იქნეს, აგრეთვე, კლასიფიცირებული ქიმიური ნივთიერებების ნარევები. CLP/GHS კლასიფიკაციის მიზანია გარემოში ქიმიური ფაქტორების შეფასებისადმი მიდგომის უნიფიცირება და ჰარმონიზაცია.

ქიმიური ნივთიერებების კლასიფიკაციის, ნიშანდებისა და შეფუთვის საერთაშორისო სისტემა (CLP/GHS) მოიცავს საშიშროების 28 კატეგორიას: ფიზიკური საშიშროების შესაფასებელი 16 კატეგორია, ჯანმრთელობის მდგომარეობის შესაფასებელი 10 კატეგორია და გარემოს მდგომარეობის შესაფასებელი 2 კატეგორია.

ჯანმრთელობის მდგომარეობის შესაფასებელი საშიშროების კატეგორიებია: